• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 39
  • 16
  • 11
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 200
  • 38
  • 36
  • 30
  • 22
  • 21
  • 20
  • 15
  • 14
  • 13
  • 12
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Cloning of pollutant inducible genes from common carp, cyprinus carpio.

January 1996 (has links)
Chan Pat Chun. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1996. / Includes bibliographical references (leaves 153-177). / Acknowledgments --- p.i / Presentations Derived from the Present thesis Work --- p.ii / Abstract --- p.iii / Abbreviations --- p.v / Abbreviation Table for Amino Acids --- p.viii / List of Figures --- p.ix / List of Tables --- p.xi / Contents --- p.xii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Environmental Pollutants --- p.1 / Chapter 1.2 --- Pollutant Inducible Genes (PIGs) --- p.1 / Chapter 1.2.1 --- Classification of PIGS --- p.2 / Chapter 1.2.1.1 --- Drug Metabolizing Enzymes/Proteins --- p.2 / Chapter 1.2.1.2 --- Stress Proteins --- p.5 / Chapter 1.2.1.3 --- Antioxidant Enzymes --- p.6 / Chapter 1.2.1.4 --- "Hormones, Growth Factors and Their Receptors" --- p.6 / Chapter 1.2.1.5 --- Enzymes/Proteins Involved in Bioenergetics --- p.6 / Chapter 1.2.2 --- PIGs as a Field of Study --- p.8 / Chapter 1.2.2.1 --- Study of the Mechanism of Detoxification and Toxication --- p.8 / Chapter 1.2.2.2 --- Biomarker Study --- p.9 / Chapter 1.2.2.3 --- Study of Regulation of Gene Expression --- p.11 / Chapter 1.2.2.4 --- Study of Evolution --- p.12 / Chapter 1.3 --- Aims and Rational of the Present Study --- p.12 / Chapter 2 --- General Methodology --- p.15 / Chapter 2.1 --- Materials --- p.15 / Chapter 2.2.1 --- Reagents --- p.15 / Chapter 2.1.1.1 --- Preparation of Plasmid DNA --- p.15 / Chapter 2.1.1.2 --- Preparation of Genomic DNA --- p.15 / Chapter 2.1.1.3 --- Purification of Total RNA --- p.16 / Chapter 2.1.1.4 --- Restriction Enzyme Digestion --- p.16 / Chapter 2.1.1.5 --- Capillary Blotting of DNA (Southern Blotting) --- p.16 / Chapter 2.1.1.6 --- Capillary Blotting of Total RNA (Northern Blotting) --- p.17 / Chapter 2.1.1.7 --- Hybridization --- p.17 / Chapter 2.1.1.8 --- Library Screening --- p.18 / Chapter 2.1.1.9 --- Polymerase Chain Reaction --- p.18 / Chapter 2.1.1.10 --- Transformation of E. coli Competent Cells --- p.19 / Chapter 2.1.1.11 --- Nucleotide Sequence Determination --- p.19 / Chapter 2.1.2 --- List of Primers --- p.20 / Chapter 2.1.2.1 --- Primers used for Nucleotide Sequence Determination --- p.20 / Chapter 2.1.2.2 --- Primer Used for First Strand cDNA Synthesis --- p.20 / Chapter 2.1.2.3 --- Primers for Amplifying Actin cDNA Fragment --- p.20 / Chapter 2.1.2.4 --- Common Carp MT Specific Primers --- p.20 / Chapter 2.1.2.5 --- Teleost CYP1A Specific Primers --- p.21 / Chapter 2.1.2.6 --- Common Carp CYP1A Specific Primers --- p.21 / Chapter 2.1.2.7 --- Primers and Cassettes for the Cloning of5' Upstream Regions of MT Genes --- p.21 / Chapter 2.1.3 --- Accession Numbers of Selected P450 and MT Nucleotide and Amino Acid Sequences in the Genebank --- p.21 / Chapter 2.1.3.1 --- MTs of Different Teleost Species --- p.21 / Chapter 2.1.3.2 --- MTs of Other Vertebrate Species' --- p.22 / Chapter 2.1.3.3 --- P450s of Different Teleost Species --- p.22 / Chapter 2.1.3.4 --- CYP1s of Different Mammalian Species --- p.22 / Chapter 2.2 --- Methods --- p.23 / Chapter 2.2.1 --- Preparation of Plasmid --- p.23 / Chapter 2.2.2 --- Preparation of Genomic DNA --- p.23 / Chapter 2.2.3 --- Purification of Total RNA --- p.24 / Chapter 2.2.4 --- Restriction Enzyme Digestion --- p.25 / Chapter 2.2.5 --- Capillary Blotting of DNA (Southern Blotting) --- p.25 / Chapter 2.2.5.1 --- Semi-dry Capillary Blotting --- p.25 / Chapter 2.2.5.2 --- Alkaline Transfer --- p.25 / Chapter 2.2.5.3 --- Transfer of Digested Genomic DNA on to Nylon Membrane --- p.26 / Chapter 2.2.6 --- Capillary Blotting of Total RNA (Northern Blotting) --- p.26 / Chapter 2.2.7 --- Radioactive Labeling of Nucleic Acid Probes --- p.26 / Chapter 2.2.8 --- Hybridization --- p.27 / Chapter 2.2.9 --- Library Screening --- p.27 / Chapter 2.2.9.1 --- Construction of Liver cDNA Library of Adult Common Carp --- p.27 / Chapter 2.2.9.2 --- Preparation of Plating Cells --- p.27 / Chapter 2.2.9.3 --- Phage Tittering --- p.27 / Chapter 2.2.9.4 --- Primary Screening --- p.28 / Chapter 2.2.9.5 --- Secondary Screening / Chapter 2.2.9.6 --- Conversion of Phage DNA to Phagemid by invivo Excision --- p.28 / Chapter 2.2.10 --- First Strand cDNA Synthesis --- p.29 / Chapter 2.2.11 --- Polymerase Chain Reaction --- p.29 / Chapter 2.2.12 --- Ligation of DNA with Linearized Plasmid --- p.30 / Chapter 2.2.13 --- Transformation of E. coli Competent Cell --- p.30 / Chapter 2.2.14 --- Nucleotide Sequence Determination --- p.31 / Chapter 2.2.15 --- Densitometric Analysis --- p.31 / Chapter 3 --- "Cloning of Common Carp MT cDNA and Gene, and Induction of MT mRNA Expression" --- p.32 / Chapter 3.1 --- Introduction --- p.32 / Chapter 3.1.1 --- Metals in Biological System --- p.32 / Chapter 3.1.2 --- Metallothionein --- p.33 / Chapter 3.1.2.1 --- Functions of MT --- p.26 / Chapter 3.1.2.2 --- Regulation of MT Expression --- p.39 / Chapter 3.1.3 --- Fish MTs --- p.44 / Chapter 3.1.3.1 --- Detection of MT in Teleost --- p.46 / Chapter 3.1.3.2 --- MT Studies in Common Carp --- p.47 / Chapter 3.1.4 --- Specific Aims of This Chapter --- p.49 / Chapter 3.2 --- Strategies --- p.50 / Chapter 3.3 --- Specific Methods --- p.50 / Chapter 3.3.1 --- Cloning of MT cDNAs of Common Carp --- p.50 / Chapter 3.3.2 --- Analysis of MT cDNA Sequences --- p.51 / Chapter 3.3.3 --- Southern Blot Analysis of Common Carp Genomic DNA --- p.52 / Chapter 3.3.4 --- Amplification of MT Gene Fragments Using PCR --- p.52 / Chapter 3.3.5 --- Amplification of the 5' Upstream Regions of MT Genes Using PCR --- p.52 / Chapter 3.3.6 --- Endogenous MT mRNA Expression of Juvenile and Adult Common Carp --- p.54 / Chapter 3.3.7 --- Induction of MT mRNA of Juvenile Common Carp Injected with Cadmium --- p.55 / Chapter 3.4 --- Results --- p.56 / Chapter 3.4.1 --- Cloning of Common Carp MT cDNAs --- p.56 / Chapter 3.4.2 --- Analysis of the MT cDNA Sequences --- p.57 / Chapter 3.4.3 --- Southern Blot Analysis of the Common Carp Genomic DNA --- p.59 / Chapter 3.4.4 --- Amplification of the MT Gene Fragments of Common Carp Using PCR --- p.62 / Chapter 3.4.5 --- Amplification of the 5' Upstream Regions of MT Genes using PCR --- p.65 / Chapter 3.4.6 --- Endogenous MT mRNA Expression of Juvenile and Adult Common Carp --- p.67 / Chapter 3.4.7 --- Induction of MT mRNA of Juvenile Common Carp Injected with Cadmium --- p.68 / Chapter 3.5 --- Discussion --- p.72 / Chapter 3.5.1 --- MT cDNAs of Common Carp --- p.72 / Chapter 3.5.1.1 --- Coding Region --- p.72 / Chapter 3.5.1.2 --- The 3' Untranslated Region --- p.75 / Chapter 3.5.1.3 --- The 5' Untranslated Region --- p.76 / Chapter 3.5.2 --- MT Genes of Common Carp --- p.77 / Chapter 3.5.3 --- MT mRNA Expression of Common Carp --- p.82 / Chapter 3.5.4 --- Normalization of the Signals of Northern Blot Analysis --- p.85 / Chapter 3.5.5 --- Common Carp MT mRNA as Biomarker of Heavy Metal Exposure? --- p.87 / Chapter 3.6 --- Conclusion --- p.89 / Chapter 4 --- Cloning of Common Carp CYP1A cDNAs and Induction of CYP1A mRNA Expression --- p.90 / Chapter 4.1 --- Introduction --- p.90 / Chapter 4.1.1 --- Cytochrome P450s --- p.90 / Chapter 4.1.2 --- Cytochrome P450 1 (CYP1) --- p.93 / Chapter 4.1.3 --- AhR Mediated CYP1A1 Gene Induction --- p.94 / Chapter 4.1.3.1 --- Anthropogenic Sources of AhR Ligands --- p.95 / Chapter 4.1.3.2 --- Natural Sources of AhR Ligands --- p.97 / Chapter 4.1.3.3 --- Potency of Inducibility --- p.97 / Chapter 4.1.3.4 --- Induction of CYP1A1 Gene Transcription by AhR --- p.98 / Chapter 4.1.3.5 --- Non-AhR Mediated CYP1A1 Gene Transcription? --- p.105 / Chapter 4.1.4 --- CYP1A Studies in Teleost Species --- p.107 / Chapter 4.1.4.1 --- Regulation of CYP1A in Teleost --- p.109 / Chapter 4.1.4.2 --- Detection of CYP1A in Teleost --- p.111 / Chapter 4.1.4.3 --- CYP1A Studies of Common Carp --- p.113 / Chapter 4.1.5 --- Specific Aims of This Chapter --- p.114 / Chapter 4.2 --- Strategies --- p.115 / Chapter 4.3 --- Specific Methods --- p.119 / Chapter 4.3.1 --- RT-PCR of CYP1A cDNAs of Common Carp --- p.119 / Chapter 4.3.2 --- Determination of the Nucleotide Sequences of the CYP1A cDNAs of Common Carp --- p.119 / Chapter 4.3.3 --- Library Screening --- p.119 / Chapter 4.3.4 --- Analysis of the CYP1A Genes of Common Carp --- p.121 / Chapter 4.3.5 --- Induction of CYP1A mRNA of Common Carp Injected with 3-MC --- p.122 / Chapter 4.4 --- Results --- p.123 / Chapter 4.4.1 --- RT-PCR of CYP1A cDNAs of Common Carp --- p.123 / Chapter 4.4.2 --- Determination of the Nucleotide Sequences of the CYP1A cDNAs of Common Carp --- p.124 / Chapter 4.4.3 --- Library Screening --- p.124 / Chapter 4.4.4 --- Analysis of the CYP1A Genes of Common Carp --- p.128 / Chapter 4.4.5 --- Induction of CYP1A mRNA of Common Carp Injected with 3-MC --- p.131 / Chapter 4.5 --- Discussion --- p.134 / Chapter 4.5.1 --- On the Use of Rainbow Trout CYP1A1 cDNA Probe --- p.134 / Chapter 4.5.2 --- CYP1A cDNAs of Common Carp --- p.134 / Chapter 4.5.3 --- CYP1A Genes of Common Carp --- p.138 / Chapter 4.5.4 --- CYP1A Expression in Uninduced and Induced Tissues --- p.142 / Chapter 4.5.5 --- The Use of CYP1A cDNAs As Biomarkers --- p.146 / Chapter 4.6 --- Conclusion --- p.148 / Chapter 5 --- General Conclusion --- p.149 / Chapter 6 --- References --- p.153
42

IGF-I in common carp: gene structure, promoter characterization, regulation of gene expression and cloning of receptor subtypes. / CUHK electronic theses & dissertations collection

January 2002 (has links)
by Vong Puinga Queenie Maria. / "August 2002." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (p. 176-194). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
43

An examination of environmental policy regarding the 2008 Koi Herpesvirus (CyHV-3) outbreak in Lake Simcoe, Ontario, Canada: the disposal of Cyprinus carpio carpio L. on First Nation and off-reserve land

Cooper, Kira Jade 02 May 2013 (has links)
Koi Herpesvirus (KHV), a species-specific DNA virus of the family Herpesviridae, is responsible for mass mortalities of common carp (Cyprinus carpio carpio L.) throughout the world. KHV’s broad geographical distribution and relatively high mortality rate among infected fish, creates significant disposal issues when die-offs occur, especially taking into account the body burden of contaminants in the fish. In locales where adequate disposal facilities are unavailable, or are unable to accommodate additional loadings of contaminated fish carcasses, concerns regarding human and environmental health are raised. During the summer of 2008, residents of the Lake Simcoe Region of southern Ontario, Canada, were faced with a massive die-off of carp, infected with KHV. Carp within the Great Lakes and much of the world are known to bioaccumulate (and biomagnify) contaminants, such as, polychlorinated biphenyls (PCBs), pesticides (e.g., dichlorodiphenyltrichloroethane, DDT, and toxic metals (e.g., mercury). These contaminants have been associated with numerous adverse effects on both human and environmental health, and are thus of important considerations when planning for large-scale carcass disposal, following fish die-offs. Although suites of microbiological tests and water quality assessments are frequently conducted to identify causative factors during extensive fish-kills - assessments of relative contaminant burdens in the carcasses, which should dictate the most appropriate method of carcass disposal - are rarely performed. A case study on Snake Island, Lake Simcoe, Ontario was conducted to further examine the implications of this policy. Soil samples from two known disposal sites and three presumed control locations were sampled on Snake Island and sent to the Analytical Services Unit of Queen’s University for chemical analysis. Although none of the soil samples exceeded any legal guidelines in the present study, there is still concern as future die-offs of other fish species or piscivorous birds and the disposal of large numbers of carcasses may be an issue.
44

Changes in Native Aquatic Vegetation, Associated Fish Assemblages, and Food Habits of Largemouth Bass (Micropterus salmoides) Following the Addition of Triploid Grass Carp to Manage Hydrilla (Hydrilla Verticillata) in Lake Conroe, TX

Ireland, Patrick Alexander 2010 August 1900 (has links)
Nuisance aquatic vegetation (mainly Hydrilla Verticillata ) has become problematic in Lake Conroe, TX. Consequently, triploid grass carp (Ctenopharynogodon idella) were stocked at densities sufficient to completely denude the reservoir of all vegetation (invasive and native plants) within one year. As a result, an assessment was designed to investigate the changes (before and after carp stocking) in the plant assemblage among sampling stations, changes in water quality parameters, length frequency and condition changes of Centrachid species, largemouth diet changes, and changes in the fish assemblages among randomly selected sampling stations between early fall 2007, when grass carp were stocked, and one year later in early fall of 2008. The areas for sampling were based upon aquatic vegetation surveys by Texas Parks and Wildlife during 2007 and 2008, thirteen sampling stations were randomly selected using ArcGIS software and the percentage of water surface covered by vegetation was recorded at each station. Within each station, fish were collected by electrofishing the entire station for five minutes; water samples were also collected. Largemouth bass diet did significantly change for mature (<200 mm-TL) bass as indicated by a chi-square test. Largemouth bass from the samples were shown to consume less sunfish and more shad by the second (post-carp) sample. This is consistent with expected results due to the removal of vegetation consequently eliminating small sunfish habitat. In similar fashion, significant length-frequency changes were seen in the second year as there were fewer smaller (juvenile) Centrachid species found in the sampling sites. Contrary to the Centrachids, length-frequency of gizzard shad significantly decreased in size by the second sampling year. Based upon the aquatic vegetation surveys within the sampling sites of 2007 and 2008, there was an almost complete elimination of all aquatic plants following carp introduction. This result was consistent with what was expected from the carp introductions. Changes in water quality parameters (phosphorous, nitrate, nitrites, orthophosphate, chlorophyll (a)), were generally inconclusive, with the exception of nitrate which significantly increased by the second year. The water quality parameters along with other measured habitat parameters were used in the multivariate analysis.
45

Novel mechanisms for SOCS-3 regulation in grass carp synergistic actions of growth hormone and glucagon at the hepatic level /

Xiao, Jia, January 2009 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2010. / Includes bibliographical references (leaves 96-112). Also available in print.
46

Functional studies of pituitary activin/follistatin system in grass carp

Fung, Sai-kit, 馮世傑 January 2010 (has links)
published_or_final_version / Biological Sciences / Doctoral / Doctor of Philosophy
47

Biphasic growth hormone release induced by protein kinase C activationin grass carp pituitary cells

朱美詩, Chu, Mei-sze. January 1999 (has links)
published_or_final_version / Zoology / Master / Master of Philosophy
48

Energy budget and aspects of energy metabolism in common carp, Cyprinus carpio

Chakraborty, Subhash Chandra January 1992 (has links)
Aspects of the resting respiration rate, specific dynamic action (SDA) and components of the total energy budget of 55 - 80g common carp were studied in the laboratory. The resting respiratory rate was monitored in computer operated metabolic chambers under different photoperiods. Common carp showed a crepuscular respiratory rhythm with peaks at dawn and dusk during a 12L : 12D photoperiod, with a mean oxygen consumption of 152 mg/kg/h. When acclimated to longer or shorter photoperiods respiration was also cyclic but with a lower mean respiratory rate. In continuous light or darkness respiratory rhythm was suppressed with no significant peakings. In carp fed with three diets containing 20,35 and 50% protein at a ration level of 0.40 to 1.00% body weight per day, SDA coefficient varied from 8.99 to 15.94% and was dependent on dietary protein but not on ration levels. SDA magnitude and post-feeding peak oxygen consumption varied significantly with both dietary protein content and total daily ration level. SDA duration was only related to ration size. The pattern of food energy allocation between the major components of the energy budget varied with dietary protein content and ration levels. The energy lost as heat of metabolism was found to increase with dietary protein level and total ration. Energy lost as faeces 'F' varied from 19 - 24% of 'C' and did not appear to be related to either protein content or ration levels. Nitrogenous excretion increased with an increase of dietary protein but decreased with an increase of ration level in the diet. Regression equations were developed from the data to allow prediction of respiratory energy loss 'R', faecal energy loss 'F' and energy lost through excretion 'U' from the food ingested V. Complete energy budget models compiled from experiments conducted over a 17 days period and using different diets did not successfully predict the actual growth. The energy budget balance was between 66.04% and 81.96%. Observed growth was less than predicted growth in every trial and it is suggested that this difference might have been due to short-term cyclic growth regulation and other minor experimental features. The data presented form the basis for the first reported study of total energy budgets in Cyprinus carpio.
49

A strategic analysis of carp culture development in Iran

Salehi, Hassan January 1999 (has links)
The thesis is concerned with the strategic analysis of carp culture development in Iran, based on an assessment of the supply potential from various forms of carp farming, and on the potential demand, market features and price determinants for carp and carp products. Based on a sample of 188 farms from the three main carp farming provinces plus two case studies, all farmers in all locations and categories made a profit, with feed and fertiliser dominating variable costs. Considerable variation in production costs and profitability was observed. Where some degree of investment and support services have been provided, major increases in output have occurred. The culture of carp is technically possible in a variety of conditions within the country, though, expanding large scale farming mainly depends on reducing the cost of feed and fertiliser. Future targets could be to integrate with other agricultural activities, intensify smaller farms in the Caspian area, and consider developing larger scale commercial production in Khuzestan. A market and consumer survey was conducted, including a sample of 357 consumers in Tehran and Karaj, and 96 sellers in 11 main cities from 6 provinces. Younger consumers had the strongest preferences for ready meals product, while to increase consumption, a rise in income and decline in price will have a greater effect on older groups, larger sized families and educated people. The growing willingness to buy new product forms, particularly by younger consumers, educated groups, inland urban dwellers and high-middle income groups might be expected to increase demand. A range of supply/demand scenarios has been presented, offering projections for the year 2010, suggested target levels of 284,000-348,000t. In broad terms a policy for carp production was described to meet these targets. As in developing markets elsewhere, the traditional wholesale sector may lose its position as multiple retailers and supermarket chains become increasingly important outlets for carp and its products, and opportunities may arise for adding value in a range of ways. Within rural areas, and smaller cities, consumers may also increase their ability to buy fresh fish at the farm gate or at local outlets.
50

An examination of environmental policy regarding the 2008 Koi Herpesvirus (CyHV-3) outbreak in Lake Simcoe, Ontario, Canada: the disposal of Cyprinus carpio carpio L. on First Nation and off-reserve land

Cooper, Kira Jade 02 May 2013 (has links)
Koi Herpesvirus (KHV), a species-specific DNA virus of the family Herpesviridae, is responsible for mass mortalities of common carp (Cyprinus carpio carpio L.) throughout the world. KHV’s broad geographical distribution and relatively high mortality rate among infected fish, creates significant disposal issues when die-offs occur, especially taking into account the body burden of contaminants in the fish. In locales where adequate disposal facilities are unavailable, or are unable to accommodate additional loadings of contaminated fish carcasses, concerns regarding human and environmental health are raised. During the summer of 2008, residents of the Lake Simcoe Region of southern Ontario, Canada, were faced with a massive die-off of carp, infected with KHV. Carp within the Great Lakes and much of the world are known to bioaccumulate (and biomagnify) contaminants, such as, polychlorinated biphenyls (PCBs), pesticides (e.g., dichlorodiphenyltrichloroethane, DDT, and toxic metals (e.g., mercury). These contaminants have been associated with numerous adverse effects on both human and environmental health, and are thus of important considerations when planning for large-scale carcass disposal, following fish die-offs. Although suites of microbiological tests and water quality assessments are frequently conducted to identify causative factors during extensive fish-kills - assessments of relative contaminant burdens in the carcasses, which should dictate the most appropriate method of carcass disposal - are rarely performed. A case study on Snake Island, Lake Simcoe, Ontario was conducted to further examine the implications of this policy. Soil samples from two known disposal sites and three presumed control locations were sampled on Snake Island and sent to the Analytical Services Unit of Queen’s University for chemical analysis. Although none of the soil samples exceeded any legal guidelines in the present study, there is still concern as future die-offs of other fish species or piscivorous birds and the disposal of large numbers of carcasses may be an issue.

Page generated in 0.0341 seconds