• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 39
  • 16
  • 11
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 200
  • 38
  • 36
  • 30
  • 22
  • 21
  • 20
  • 15
  • 14
  • 13
  • 12
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Cold-adaptation of carp (Cyprinus carpio L.) : lipid unsaturation and induced desaturase expression

Gracey, Andrew Y. January 1996 (has links)
No description available.
32

The effects of Common Carp (Cyprinus carpio L.) on water quality, algae and submerged vegetation in Delta Marsh, Manitoba

Hertam, Susan 21 September 2010 (has links)
Common Carp, (Cyprinus carpio), have long been associated with the degradation of wetlands worldwide. Through their feeding activities they resuspend sediments leading to reductions in the abundance and diversity of submerged macrophytes, and the alteration of water chemistry which can lead to the phytoplankton-dominated state. This study took in Delta Marsh, a freshwater coastal wetland of Lake Manitoba, in Manitoba, Canada. It was the second part of a four-year study in which baseline data were collected in 2001 from ten ponds (1-13 ha) with varying degrees of connectivity to the main marsh and carp-accessibility. I continued to monitor a subset of the control and altered ponds two and three years following their alteration (2003 and 2004); I included new ponds, including one large open bay (20.3 ha). The overall four-year study has shown that the presence of carp is at least partially responsible for the turbid, phytoplankton-dominated state that exists in Delta Marsh, and that carp abundance is an important factor. Ponds previously isolated then exposed to carp activity, particularly in the spring when they were gathered at high densities, shifted to the turbid, phytoplankton-dominated state with few macrophytes, and the removal of carp from ponds led to the clear-water state, though not necessarily an abundance of macrophytes. Due to the complexity of natural ecosystems, the effects of carp were not as predictable as smaller-scale studies would suggest. In my study, water quality, submerged vegetation biomass and algal growth varied both temporally and spatially in carp-accessible and carp-free ponds. Nutrient deficiency among periphyton assemblages was hypothesized to be alleviated by the presence of carp. Using nutrient diffusing substrata, I found that nutrient deficiencies varied from year to year among carp-free and carp-accessible ponds. In 2003 the hypothesis was supported, however, in 2004 two of the carp-free ponds exhibited no-nutrient limitations to periphyton assemblages while N and P co-limitation became prevalent in one carp-accessible pond. Parameters over which there was no control, such as the spatial and temporal distribution of carp, their density within a pond, water depth and unquantified top-down effects, including zooplankton grazing, may have contributed to the variability of the results.
33

Some aspects of ammonia toxicity on the gill pathology of carp (Cyprinus carpio L.) and trout (Salmo gairdneri)

Lakshmikantham, P. Kothanur January 1989 (has links)
No description available.
34

Modulatory effects of cadmium and copper on the susceptibility and immune response of common carp, Cyprinus carpio (L) to selected pathogens

Mohan, C. V. January 1990 (has links)
No description available.
35

Communal or separate rearing of families in selective breeding of common carp (Cyprinus carpio L.)

Ninh, Nguyen Huu January 2009 (has links)
This study reports on investigation of ways of improving the breeding programme for growth-related traits in common carp in Vietnam. The base population was synthesized following a single pair mating scheme from six carp stocks: (1) 2nd generation of family selection; (2) Hungarian 6th generation of mass selection; (3) Hungarian scaled carp; (4) Indonesian yellow 6th generation of mass selection; (5) Indonesian yellow carp; and (6) Vietnamese 6th generation of mass selection. The next two selected generations were produced using a partial factorial mating scheme, with each family being split and reared using communal early rearing (CER) or separate early rearing (SER) methods. The second generation (G2) was produced from selected fish from the CER G1 group. The total number of selection, control and reference families was 135 in the G1 and 101 in the G2 respectively. The control and reference (Hungarian P33 line) families were produced by single pair mating (reference families with the G2 only). Seven microsatellite loci were used for parentage assignment in the CER groups: 96.8% of the offspring (1284 individuals) and 96.2% offspring (1341 individuals) were unambiguously assigned to 113 families (selection, control) in the G1 and 99 families (selection, control and reference) in the G2 generations, respectively. Restricted maximum likelihood in the individual model was used to estimate phenotypic and genetic parameters. In CER, the estimated heritability values of common carp were from 0.20 ± 0.04 to 0.29 ± 0.05 for both weight and length at final harvest, indicating substantial additive genetic variation for selection on growth-related traits. The overall obtained maternal and common environmental effects were consistently close to zero. The average of direct response to selection for body weight was 15.0% per generation. In SER, the number of families in the G1 and G2 were 135 (selection and control) and 101 (selection, control and reference), respectively. The heritability estimates were from 0.20 ± 0.07 to 0.31 ± 0.08 at final measurement. Common environmental (full-sib family) effect were all lower at tagging and slightly higher at last measurement, ranging from 0.05 to 0.22. The response in each generation of selection as the difference between the selection and control lines was 8.1% on average for weight at final harvest, lower than under CER. The high genetic correlations of growth-related traits between the third (one year old, mature) and second (7 months old) measurements could allow selection to be based on the earlier assessment, reducing handling stress close to spawning. The benefits of using microsatellite markers to ascertain parentage, achieve greater growth rate (close to farming systems), shorten time to maturity and selection, and the overall relative merits of using CER v’s SER in this genetic improvement programme are discussed.
36

Novel aspects of bighead carp sperm storage and larval/juvenile rearing to address control of invasive Asian carp in the USA

Fisher, Kevin J. January 2020 (has links)
No description available.
37

The culture of carp fry in freshwater ponds in Hong Kong

Chow, Ti., 周芪. January 1962 (has links)
published_or_final_version / Zoology / Master / Master of Science
38

Reporter gene expression in transgenic tilapia, Oreochromis niloticus (L.)

Abdul Razak, Shaharudin January 1999 (has links)
No description available.
39

Digestibility and availability of amino acids from carp (Cyprinus carpio) muscle

Rimbawan January 1992 (has links)
No description available.
40

Cloning of insulin-like growth factor-I (IGF-I Ea2) cDNA from common carp (cyprinus carpio).

January 1995 (has links)
by Liang Yiu-hon. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1995. / Includes bibliographical references (leaves 104-117). / ACKNOWLEDGMENTS --- p.i / ABSTRACT --- p.ii / ABBREVIATIONS --- p.iii / AMINO ACIDS SHORTHAND --- p.v / TABLE OF CONTENTS --- p.vi-x / Chapter CHAPTER 1 --- INTRODUCTION / Chapter 1.1 --- General Introduction --- p.1 / Chapter 1.2 --- The Discovery of IGFs --- p.1 / Chapter 1.3 --- The Growth Promoting Actions of IGFs --- p.3 / Chapter 1.4 --- Molecular Biology of IGFs in Mammals --- p.6 / Chapter 1.4.1 --- IGF Genes and Transcripts --- p.6 / Chapter 1.4.2 --- Regulation of IGF Gene Expression --- p.8 / Chapter 1.5 --- IGF Binding Proteins --- p.11 / Chapter 1.5.1 --- Regulation of IGF Action by IGF Binding Proteins --- p.11 / Chapter 1.6 --- The Insulin and IGF Receptors --- p.13 / Chapter 1.6.1 --- IGF-I Receptor --- p.13 / Chapter 1.6.2 --- IGF-II Receptor --- p.13 / Chapter 1.6.3 --- Insulin/IGF-I Hybrid Receptor --- p.15 / Chapter 1.7 --- IGF in Mammalian Fetal Growth --- p.17 / Chapter 1.8 --- The Role of IGFs in Fish --- p.19 / Chapter 1.9 --- Aims of the Present Study --- p.26 / Chapter CHAPTER 2 --- GENERAL METHODOLOGY / Chapter 2.1 --- Materials --- p.27 / Chapter 2.2 --- Methods --- p.32 / Chapter 2.2.1 --- Gene Clean --- p.32 / Chapter 2.2.1A --- Gene Clean by Glassmilk Method --- p.32 / Chapter 2.2.1B --- Gene Clean by Sephaglas´ёØ BandPrep Kit --- p.32 / Chapter 2.2.2 --- Preparation of Radioactive Nucleic Acid Probes --- p.33 / Chapter 2.2.3 --- Sephadex G-50 Spun-column Chromatography --- p.33 / Chapter 2.2.4 --- Small Scale Alkali Preparation of Plasmid DNA --- p.34 / Chapter 2.2.5 --- Large Scale Preparation of Plasmid DNA 36 - using Wizard Maxiprep Kit (Promega) / Chapter 2.2.6 --- DNA Sequencing using T7 DNA Polymerase Sequencing Kit (Pharmacia) --- p.37 / Chapter 2.2.7 --- Restriction Enzyme Digestion --- p.38 / Chapter 2.2.8 --- Agarose Gel Electrophoresis --- p.39 / Chapter 2.2.9 --- Dephosphorylation of Linearized Plasmid DNA --- p.39 / Chapter 2.2.10 --- Ligation of Foreign DNA with Linearized Plasmid --- p.40 / Chapter 2.2.11 --- Transformation of Plasmid Vector into Competent Cell (Heat Shock Method) --- p.40 / Chapter 2.2.12 --- Blotting : Transfer of DNA to Nylon Membrane --- p.41 / Chapter 2.2.12A --- Capillary Transfer of DNA to Nylon Membrane in 10X SSC --- p.41 / Chapter 2.2.12B --- Capillary Transfer of DNA to Nylon Membrane under Alkaline Condition --- p.42 / Chapter CHAPTER 3 --- SCREENING OF COMMON CARP LIVER cDNA LIBRARY / Chapter 3.1 --- Introduction --- p.44 / Chapter 3.2 --- Materials and Methods --- p.45 / Chapter 3.2.1 --- Materials --- p.45 / Chapter 3.2.2 --- Methods --- p.48 / Chapter 3.2.2.1 --- Preparation of the Plating Host --- p.48 / Chapter 3.2.2.2 --- Phage Titering --- p.48 / Chapter 3.2.2.3 --- Primary Screening of Common Carp Liver cDNA Library --- p.48 / Chapter 3.2.2.4 --- Purification of the Positive Clone --- p.49 / Chapter 3.2.2.5 --- Checking the Insert Size of the Positive Clone --- p.50 / Chapter 2.2.2.6 --- In vivo Excision to Release Phagemid from the Phage vector --- p.51 / Chapter 3.2.2.7 --- Plasmid Minipreparation of the Positive Clone --- p.52 / Chapter 3.2.2.8 --- Restriction Enzyme Digestion to Release the Insert --- p.52 / Chapter 3.2.2.9 --- Large Scale Plasmid Preparation of the Positive Clone --- p.53 / Chapter 3.2.2.10 --- DNA Sequencing of the Positive Clone --- p.53 / Chapter 3.2.2.11 --- Restriction Mapping of the Positive Clone --- p.53 / Chapter 3.2.2.12 --- Subcloning of the Positive Clone into Plasmid Vectors --- p.53 / Chapter 3.2.2.13 --- DNA Sequencing of the Subclones --- p.54 / Chapter 3.3 --- Results and Discussion --- p.55 / Chapter CHAPTER 4 --- RNA ASSAY USING REVERSE TRANSCRIPTION- POLYMERASE CHAIN REACTION / Chapter 4.1 --- Introduction --- p.70 / Chapter 4.2 --- Materials and Methods --- p.71 / Chapter 4.2.1 --- Materials --- p.71 / Chapter 4.2.2 --- Methods --- p.72 / Chapter 4.2.2.1 --- Tissue Preparation --- p.72 / Chapter 4.2.2.2 --- Total RNA Extraction --- p.72 / Chapter 4.2.2.3 --- Electrophoresis of RNA in Agarose Gel Containing Formaldehyde --- p.73 / Chapter 4.2.2.4 --- First Strand cDNA Synthesis --- p.74 / Chapter 4.2.2.5 --- IGF-I Specific PCR --- p.75 / Chapter 4.2.2.6 --- Preparation of Carp IGF Conserve Region --- p.75 / Chapter 4.2.2.7 --- Southern Hybridization of PCR Products --- p.76 / Chapter 4.3 --- Results and Discussion --- p.76 / Chapter CHAPTER 5 --- GENOMIC SOUTHERN ANALYSIS / Chapter 5.1 --- Introduction --- p.80 / Chapter 5.2 --- Materials and Methods --- p.81 / Chapter 5.2.1 --- Materials --- p.81 / Chapter 5.2.2 --- Methods --- p.82 / Chapter 5.2.2.1 --- Preparation of Genomic DNA from Carp Testis --- p.82 / Chapter 5.2.2.2 --- Restriction Enzyme Digestion of Genomic DNA --- p.82 / Chapter 5.2.2.3 --- Southern Blotting of the Digested Genomic DNA --- p.83 / Chapter 5.2.2.4 --- Preparation of the Carp IGF-I Specific Probe --- p.83 / Chapter 5.2.2.5 --- Genomic Southern Hybridization --- p.83 / Chapter 5.3 --- Results and Discussion --- p.84 / Chapter CHAPTER 6 --- THE SEARCH OF OTHER IGF cDNA SUBTYPES IN COMMON CARP / Chapter 6.1 --- Introduction --- p.88 / Chapter 6.2 --- Materials and Methods --- p.89 / Chapter 6.2.1 --- Materials --- p.89 / Chapter 6.2.2 --- Methods --- p.91 / Chapter 6.2.2.1 --- Screening using a Conserve Region cDNA Probe of Carp IGF-I --- p.91 / Chapter 6.2.2.2 --- PCR using IGF-I Specific Primers --- p.92 / Chapter 6.2.2.3 --- PCR Using T3 and T7 Primers --- p.92 / Chapter 6.2.2.4 --- Southern Blot Analysis of T3 and T7 PCR Products of cDNA Insert --- p.93 / Chapter 6.2.2.5 --- DNA Sequencing of Positive Clones --- p.94 / Chapter 6.3 --- Results and Discussion --- p.94 / Chapter CHAPTER 7 --- GENERAL DISCUSSION AND CONCLUSION --- p.99 / REFERENCES --- p.104-117

Page generated in 0.0327 seconds