• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Round-Trip Time-Division Distributed Beamforming

Coey, Tyson Curtis 10 July 2007 (has links)
"This thesis develops a system for synchronizing two wireless transmitters so that they are able to implement a distributed beamformer in several different channel models. This thesis considers a specific implementation of the system and proposes a metric to quantify its performance. The system's performance is investigated in single-path and multi-path time-invariant channel scenarios, as well as in single-path time-varying channel scenarios. Where prior systems have difficulty in implementing a distributed beamformer in multi-path channels and/or mobile scenarios, the results of this thesis show that the Round-Trip Time-Division distributed beamforming system is able to perform as a beamformer in all three of the channel models considered. "
2

An Optimized Software-Defined-Radio Implementation of Time-Slotted Carrier Synchronization for Distributed Beamforming

Ni, Min 02 September 2010 (has links)
"This thesis describes the development of an optimized software-defined-radio implementation of a distributed beamforming system and presents experimental results for two-source and three- source wired-channel and acoustic-channel distributed beamforming using the time-slotted round-trip carrier synchronization protocol. The frequency and phase synthesizer used in this system is based on an optimized ``hybrid' phase locked loop (PLL) with averaging window which is shown to have high frequency estimation accuracy and consistency. For the wired-channel experiments, each source node was implemented by a TMS320C6713DSK while for the acoustic experiments, each source node in the system was built using commercial off-the-shelf parts including TMS320C6713DSK, microphone, speaker, audio amplifier, and battery. The source node functionality including phase locked loops and the logic associated with the time-slotted round-trip carrier synchronization protocol was realized through real-time software independently running on each source node's C6713 digital signal processor. Experimental results for two-source and three-source realizations of the wired-channel and acoustic-channel distributed beamforming system are presented. The results show that near-ideal beamforming performance can be consistently achieved at acoustic wavelengths equivalent to common radio frequency wavelengths."
3

A MODIFIED FOUR-QUADRANT FREQUENCY DISCRIMINATOR FOR CARRIER FREQUENCY ACQUISITION OF GPS RECEIVERS

Tingyan, Yao, Weigang, Zhao, Qishan, Zhang 10 1900 (has links)
ITC/USA 2005 Conference Proceedings / The Forty-First Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2005 / Riviera Hotel & Convention Center, Las Vegas, Nevada / The four-quadrant frequency discriminator (FQFD) plays an important role in GPS receivers for carrier synchronization. This paper presents a detailed study of the operating principle of the FQFD, and the acquisition performance degradation due to the gain fluctuation of the FQFD is discussed. A modified FQFD called the enveloped-four-quadrant frequency discriminator (Enveloped-FQFD) is proposed, which introduces an envelope calculator on the basis of the FQFD. Performance comparison of the FQFD and the Enveloped-FQFD is given through theoretical analysis and computer simulation. Simulation results show that by employing the Enveloped-FQFD, a quicker pull-in process and a wider threshold than the FQFD can be achieved, while the additional hardware costs are trivial.
4

Real-Time Software-Defined-Radio Implementation of Time-Slotted Carrier Synchronization for Distributed Beamforming

Zhang, Boyang 05 May 2009 (has links)
This thesis describes a real-time software-defined-radio implementation of the time-slotted round-trip carrier synchronization protocol in two-source and three-source communication systems. The techniques developed in this thesis can be used to synchronize the carriers of two or three single-antenna wireless transmitters with independent local oscillators so that their band-pass transmissions combine constructively at an intended receiver. Synchronization is achieved via the time-slotted transmission of (i) an unmodulated primary beacon from the destination to the sources and (ii) a series of secondary unmodulated beacons between the sources. Explicit channel state information is not exchanged between the sources and/or the destination. When synchronized, the single-antenna sources are able to cooperatively transmit as a distributed beamformer and achieve increased transmission range, reduced transmission energy, and/or increased security. The experimental results in this thesis confirm the theoretical predictions and also provide explicit guidelines for the real-time implementation of a carrier synchronization technique suitable for distributed transmit beamforming.
5

Carrier Recovery in burst-mode 16-QAM

Chen, Jingxin 30 June 2004
Wireless communication systems such as multipoint communication systems (MCS) are becoming attractive as cost-effective means for providing network access in sparsely populated, rugged, or developing areas of the world. Since the radio spectrum is limited, it is desirable to use spectrally efficient modulation methods such as quadrature amplitude modulation (QAM) for high data rate channels. Many MCS employ time division multiple access (TDMA) and/or time division duplexing (TDD) techniques, in which transmissions operate in bursts. In many cases, a preamble of known symbols is appended to the beginning of each burst for carrier and symbol timing recovery (symbol timing is assumed known in this thesis). Preamble symbols consume bandwidth and power and are not used to convey information. In order for burst-mode communications to provide efficient data throughput, the synchronization time must be short compared to the user data portion of the burst. <p> Traditional methods of communication system synchronization such as phase-locked loops (PLLs) have demonstrated reduced performance when operated in burst-mode systems. In this thesis, a feedforward (FF) digital carrier recovery technique to achieve rapid carrier synchronization is proposed. The estimation algorithms for determining carrier offsets in carrier acquisition and tracking in a linear channel environment corrupted by additive white Gaussian noise (AWGN) are described. The estimation algorithms are derived based on the theory of maximum likelihood (ML) parameter estimation. The estimations include data-aided (DA) carrier frequency and phase estimations in acquisition and non-data-aided (NDA) carrier phase estimation in tracking. The DA carrier frequency and phase estimation algorithms are based on oversampling of a known preamble. The NDA carrier phase estimation makes use of symbol timing knowledge and estimates are extracted from the random data portion of the burst. The algorithms have been simulated and tested using Matlab® to verify their functionalities. The performance of these estimators is also evaluated in the burst-mode operations for 16-QAM and compared in the presence of non-ideal conditions (frequency offset, phase offset, and AWGN). The simulation results show that the carrier recovery techniques presented in this thesis proved to be applicable to the modulation schemes of 16-QAM. The simulations demonstrate that the techniques provide a fast carrier acquisition using a short preamble (about 111 symbols) and are suitable for burst-mode communication systems.
6

Carrier Recovery in burst-mode 16-QAM

Chen, Jingxin 30 June 2004 (has links)
Wireless communication systems such as multipoint communication systems (MCS) are becoming attractive as cost-effective means for providing network access in sparsely populated, rugged, or developing areas of the world. Since the radio spectrum is limited, it is desirable to use spectrally efficient modulation methods such as quadrature amplitude modulation (QAM) for high data rate channels. Many MCS employ time division multiple access (TDMA) and/or time division duplexing (TDD) techniques, in which transmissions operate in bursts. In many cases, a preamble of known symbols is appended to the beginning of each burst for carrier and symbol timing recovery (symbol timing is assumed known in this thesis). Preamble symbols consume bandwidth and power and are not used to convey information. In order for burst-mode communications to provide efficient data throughput, the synchronization time must be short compared to the user data portion of the burst. <p> Traditional methods of communication system synchronization such as phase-locked loops (PLLs) have demonstrated reduced performance when operated in burst-mode systems. In this thesis, a feedforward (FF) digital carrier recovery technique to achieve rapid carrier synchronization is proposed. The estimation algorithms for determining carrier offsets in carrier acquisition and tracking in a linear channel environment corrupted by additive white Gaussian noise (AWGN) are described. The estimation algorithms are derived based on the theory of maximum likelihood (ML) parameter estimation. The estimations include data-aided (DA) carrier frequency and phase estimations in acquisition and non-data-aided (NDA) carrier phase estimation in tracking. The DA carrier frequency and phase estimation algorithms are based on oversampling of a known preamble. The NDA carrier phase estimation makes use of symbol timing knowledge and estimates are extracted from the random data portion of the burst. The algorithms have been simulated and tested using Matlab® to verify their functionalities. The performance of these estimators is also evaluated in the burst-mode operations for 16-QAM and compared in the presence of non-ideal conditions (frequency offset, phase offset, and AWGN). The simulation results show that the carrier recovery techniques presented in this thesis proved to be applicable to the modulation schemes of 16-QAM. The simulations demonstrate that the techniques provide a fast carrier acquisition using a short preamble (about 111 symbols) and are suitable for burst-mode communication systems.
7

Performance of Multitone Direct Sequence Spread Spectrum in the Presence of Imperfect Carrier Synchronization

Li, Hongxiang January 2004 (has links)
No description available.
8

Synchronization analysis and simulation of a standard IEEE 802.11g OFDM signal

Lowham, Keith D. 03 1900 (has links)
Approved for public release, distribution is unlimited / Synchronization of orthogonal frequency-division multiplexed (OFDM) signals is significantly more difficult than synchronization of a single-carrier system. The recently approved IEEE Standard 802.11g specifies a packet-based OFDM system that provides a basis for the discussion of OFDM synchronization in a packet-based environment. Algorithms that synchronize the receiver carrier demodulation frequency and phase, the data frame, the OFDM symbol timing, and the data symbol timing are discussed and analyzed in an AWGN channel. System View simulation is used to implement the frame and carrier frequency synchronization algorithms, where the performance of these algorithms is analyzed and they are shown to be useful detection algorithms for Standard 802.11g signal reception. / Lieutenant Commander, United States Navy
9

Techniques de synchronisation à très faible SNR pour des applications satellites / Synchronization techniques at very low signal to noise ratio for satellite applications

Jhaidri, Mohamed Amine 07 December 2017 (has links)
Les transmissions numériques par satellite sont largement utilisées dans plusieurs domaines allant des applications commerciales en orbites terrestres aux missions d'exploration scientifiques en espace lointain (Deep Space). Ces systèmes de transmission fonctionnent sur des très grandes distances et ils disposent des ressources énergétiques très limitées. Cela se traduit par un très faible rapport signal à bruit au niveau de la station de réception terrestre. Une possibilité d'établir une liaison fiable dans ces conditions très défavorables, réside dans l'utilisation de codes correcteurs d'erreurs puissants tels que les Turbo codes et le LDPC. Cependant, les gains de codage sont conditionnés par le bon fonctionnement des étages de la démodulation cohérente en amont, notamment l'étage de synchronisation. L'opération de synchronisation consiste à estimer et compenser le décalage en phase et en fréquence entre le signal reçu et l'oscillateur local du récepteur. Ces décalages sont généralement provoqués par des imperfections matérielles et le phénomène d'effet Doppler. A très faible rapport signal à bruit, les systèmes de synchronisation actuels se trouvent limités et incapables d'assurer les performances requises. Notre objectif est de fiabiliser l'étage de synchronisation du récepteur dans des conditions très difficiles de faible rapport signal sur bruit, d'effet Doppler conséquent avec prise en compte d'un phénomène d'accélération (Doppler rate) et d'une transmission sans pilote. Cette thèse CIFRE traite du problème de la synchronisation porteuse pour la voie descendante d'une transmission Deep Space. Après la réalisation d'une étude de l'état de l'art des techniques de synchronisation, nous avons retenu les boucles à verrouillage de phase (PLL: Phase Locked Loop). Dans un contexte industriel, les PLL offrent le meilleur compromis entre complexité d'implémentation et performances. Plusieurs détecteurs de phase basés le critère du maximum de vraisemblance ont été considérés et modélisés par leurs courbes caractéristiques. En se basant sur les modèles équivalents, nous avons développé une nouvelle étude de la phase d'acquisition non-linéaire d'une PLL du deuxième ordre avec un détecteur de phase semi-sinusoïdal. La deuxième partie de la thèse a été consacrée à l'étude des techniques de combinaison d'antennes. Ces méthodes visent à exploiter la diversité spatiale et améliorer le bilan de liaison de la chaîne de transmission tout en offrant une flexibilité de conception ainsi qu'une réduction considérable du coût d'installation. A l'issue de cette partie, nous avons proposé un nouveau schéma de combinaison d'antenne qui améliore le seuil de fonctionnement des systèmes existants. / In deep space communication systems, the long distance between the spacecraft and the ground station along with the limited capacity of the on-board power generator result a very low signal to noise ratio (SNR). However, such transmission still possible by using near Shannon limit error correction codes (Turbo code and LDPC code). Nevertheless, to take advantage of this coding gain, the coherent demodulation is mandatory, and the carrier phase synchronization must be reliable at more restrictive SNR. At very low SNR, current synchronization systems are limited and unable to provide the required performances. Our goal is to improve the reliability of the receiver synchronization stage under very difficult conditions of a very low SNR, a variable Doppler effect (Doppler rate) and a blind transmission. This thesis deals with the problem of carrier phase synchronization for the downlink of a Deep Space transmission. After the study of the existing solutions, we selected the phase locked loop (Phase Locked Loop: PLL). In an industrial context, PLL offers the best trade-off between complexity and performance. Several phase detectors based on the maximum likelihood criterion were considered and characterized by their S-curves. Based on the equivalent models, we have developed a new study of the non-linear acquisition phase of a second-order PLL with a semi-sinusoidal phase error detector. The second part of the thesis was dedicated to the antennas combining techniques. These methods aim to improve the link budget of the transmission and offer more flexibility. At the end of this part, we proposed a new antennas combining scheme that improves the operating threshold of existing systems.

Page generated in 0.1288 seconds