• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 34
  • 34
  • 13
  • 10
  • 10
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Towards Increased Photovoltaic Energy Generation Efficiency and Reliability: Quantum-Scale Spectral Sensitizers in Thin-Film Hybrid Devices and Microcracking in Monocrystalline Si

Huang, Wei-Jie, Huang, Wei-Jie January 2016 (has links)
The present work focuses on two strategies contributing to the development of high efficiency, cost-effective photovoltaic (PV) technology for renewable energy generation: the design of new materials offering enhanced opto-electronic performance and the investigation of material degradation processes and their role in predicting the long-term reliability of PV modules in the field. The first portion of the present work investigates the integration of a novel CdTe-ZnO nanocomposite material as a spectral sensitizer component within a thin-film, hybrid heterojunction (HJ) PV device structure. Quantum-scale semiconductors have the potential to improve PV device performance through enhanced spectral absorption and photocarrier transport. This is realized via appropriate design of the semiconductor nanophase (providing tunable spectral absorption) and its spatial distribution within an electrically active matrix (providing long-range charge transport). Here, CdTe nanocrystals, embedded in an electrically active ZnO matrix, form a nanocomposite (NC) offering control of both spectral absorption and photocarrier transport behavior through the manipulation of nanophase assembly (ensemble effects). A sequential radio- frequency (RF) magnetron sputter deposition technique affords the control of semiconductor nanophase spatial distribution relative to the HJ plane in a hybrid, ZnO-P3HT test structure. Energy conversion performance (current density-voltage (J-V) and external quantum efficiency (EQE) response) was examined as a function of the location of the CdTe nanophase absorber region using both one dimensional solar cell capacitance simulator (SCAPS) and the experimental examination of analogous P3HT-ZnO based hybrid thin films. Enhancement in simulated EQE over a spectral range consistent with the absorption region of the CdTe nanophase (i.e. 400–475 nm) is confirmed in the experimental studies. Moreover, a trend of decreasing quantum efficiency in this spectral range with increasing separation between the CdTe nanophase region and the heterojunction plane is observed. The results are interpreted in terms of carrier scattering/recombination length mitigating the successful transport of carriers across the junction. The second portion of the research addresses the need for robust PV performance in commercial module as a primary contributor to cost-effective operation in both distributed systems and utility scale generation systems. The understanding of physical and chemical mechanisms resulting in the degradation of materials of construction used in PV modules is needed to understand the contribution of these processes to module integrity and performance loss with time under varied application environments. In this context, the second part of present study addresses microcracking in Si–an established degradation process contributing to PV module power loss. The study isolates microcrack propagation in single-crystal Si, and investigates the effect of local environment (temperature, humidity) on microcrack elongation under applied strains. An investigation of microindenter-induced crack evolution with independent variation of both temperature and vapor density was pursued in PV-grade Si wafers. Under static tensile strain conditions, an increase in sub-critical crack elongation with increasing atmospheric water content was observed. To provide further insight into the potential physical and chemical conditions at the microcrack tip, micro-Raman measurements were performed. Preliminary results confirm a spatial variation in the frequency of the primary Si vibrational resonance within the crack-tip region, associated with local stress state, whose magnitude is influenced by environmental conditions during the period of applied static strain. The experimental effort was paired with molecular dynamics (MD) investigations of microcrack evolution in single-crystal Si to furnish additional insight into mechanical contributions to crack elongation. The MD results demonstrate that crack-tip energetics and associated cracking crystal planes and morphology are intimately related to the crack and applied strain orientations with respect to the principal crystallographic axes. The resulting fracture surface energy and the stress-strain response of the Si under these conditions form the basis for preliminary micro-scale peridynamics (PD) simulations of microcrack development under constant applied strain. These efforts were integrated with the experimental results to further inform the mechanisms contributing to this important degradation mode in Si-based photovoltaics.
2

Phonon and Carrier Transport in Semiconductors from First Principles:

Protik, Nakib Haider January 2019 (has links)
Thesis advisor: David Broido / We present fundamental studies of phonon and electron transport in semiconductors. First principles density functional theory (DFT) is combined with exact numerical solutions of the Boltzmann transport equation (BTE) for phonons and electrons to calculate various transport coefficients. The approach is used to determine the lattice thermal conductivity of three hexagonal polytypes of silicon carbide. The calculated results show excellent agreement with recent experiments. Next, using the infinite orders T-matrix approach, we calculate the effect of various neutral and charged substitution defects on the thermal conductivity of boron arsenide. Finally, we present a general coupled electron-phonon BTEs scheme designed to capture the mutual drag of the two interacting systems. By combining first principles calculations of anharmonic phonon interactions with phenomenological models of electron-phonon interactions, we apply our implementation of the coupled BTEs to calculate the thermal conductivity, mobility, Seebeck and Peltier coefficients of n-doped gallium arsenide. The measured low temperature enhancement in the Seebeck coefficient is captured using the solution of the fully coupled electron-phonon BTEs, while the uncoupled electron BTE fails to do so. This work gives insights into the fundamental nature of charge and heat transport in semiconductors and advances predictive ab initio computational approaches. We discuss possible extensions of our work. / Thesis (PhD) — Boston College, 2019. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.
3

Theoretical Investigation of Bismuth-Based Semiconductors for Photocatalytic Applications

Lardhi, Sheikha F. 11 1900 (has links)
Converting solar energy to clean fuel has gained remarkable attention as an emerged renewable energy resource but optimum efficiency in photocatalytic applications has not yet been reached. One of the dominant factors is designing efficient photocatalytic semiconductors. The research reveals a theoretical investigation of optoelectronic properties of bismuth-based metal oxide and oxysulfide semiconductors using highly accurate first-principles quantum method based on density functional theory along with the range-separated hybrid HSE06 exchange-correlation functional. First, bismuth titanate compounds including Bi12TiO20, Bi4Ti3O12, and Bi2Ti2O7 were studied in a combined experimental and theoretical approach to prove its photocatalytic activity under UV light. They have unique bismuth layered structure, tunable electronic properties, high dielectric constant and low electron and effective masses in one crystallographic direction allowing for good charge separation and carrier diffusion properties. The accuracy of the investigation was determined by the good agreement between experimental and theoretical values. Next, BiVO4 with the highest efficiency for oxygen evolution was investigated. A discrepancy between the experimental and theoretical bandgap was reported and inspired a systematic study of all intrinsic defects of the material and the corresponding effect on the optical and transport properties. A candidate defective structure was proposed for an efficient photocatalytic performance. To overcome the carrier transport limitation, a mild hydrogen treatment was also introduced. Carrier lifetime was enhanced due to a significant reduction of trap-assisted recombination, either via passivation of deep trap states or reduction of trap state density. Finally, an accurate theoretical approach to design a new family of semiconductors with enhanced optoelectronic properties for water splitting was proposed. We simulated the solid solutions Bi1−xRExCuOS (RE = Y, La, Gd and Lu) from pure BiCuOS to pure RECuOS compositions. Starting from the thermodynamic stability of the solid solution, several properties were computed for each system including bandgaps, dielectric constants, effective masses and exciton binding energies. Several compositions with specific organization and density of Bi and RE atoms, were found to be appropriate for water splitting applications. In General, the presented results give further insights to the experimentalists and recommendations for appropriate future application and defect-design of each material.
4

Comparative study of infrared photodetectors based on quantum wells (QWIPs) and quantum dots (QDIPs)

Hansson, Conny, Kishore Rachavula, Krishna January 2006 (has links)
<p>This master’s thesis deals with studies of lateral and vertical carrier transport Dot-in- </p><p>a-Well (DWELL) Quantum Dot Infrared Photodetectors (QDIPs). During the pro ject, </p><p>devices have been developed and tested using a Fourier Transform Infrared (FTIR) spec- </p><p>trometer with the purpose to find the processes governing the flow of photocurrent in </p><p>the different kinds of detectors, the dark current magnitude in the vertical Quantum Dot </p><p>Infrared Photodetector (QDIP) and the Quantum Well Infrared Photodetector (QWIP) </p><p>and the light polarization dependences for the vertical QDIP and the QWIP. </p><p>The lateral carrier transport DWELL QDIP was found to have poor conduction </p><p>in the well mainly due to re-trapping of electrons in this region. The main process gov- </p><p>erning the flow of photocurrent for this type of device at 77K is photo-excitation from </p><p>the Quantum Dot (QD)s to the excited state in the Quantum Well (QW) and further </p><p>thermal excitation. If the electrons are mainly transported in the matrix or the well at </p><p>77K is presently not clear. </p><p>For the vertical carrier transport DWELL QDIP at 77K, the wavelength response </p><p>could be tuned by altering the applied voltage. At higher voltages, the dominant process </p><p>was found to be photo-excitation from the QDs to the excited state in the QW followed </p><p>by thermal assisted tunneling into the GaAs-matrix. At lower voltages, photo-excitation </p><p>from the QDs directly into the the GaAs-matrix was the predominant process. The dark </p><p>current level in the vertical QDIPs was found to be 1.5 to 5 orders of magnitude smaller </p><p>than for the QWIP measured at 77K. Furthermore, the QDIP was found to be close to </p><p>polarization independent. As expected the QWIP had a reduced sensitivity to normal </p><p>incident light. The existence of this signal was attributed to interface scattering of light </p><p>inside the device.</p>
5

Comparative study of infrared photodetectors based on quantum wells (QWIPs) and quantum dots (QDIPs)

Hansson, Conny, Kishore Rachavula, Krishna January 2006 (has links)
This master’s thesis deals with studies of lateral and vertical carrier transport Dot-in- a-Well (DWELL) Quantum Dot Infrared Photodetectors (QDIPs). During the pro ject, devices have been developed and tested using a Fourier Transform Infrared (FTIR) spec- trometer with the purpose to find the processes governing the flow of photocurrent in the different kinds of detectors, the dark current magnitude in the vertical Quantum Dot Infrared Photodetector (QDIP) and the Quantum Well Infrared Photodetector (QWIP) and the light polarization dependences for the vertical QDIP and the QWIP. The lateral carrier transport DWELL QDIP was found to have poor conduction in the well mainly due to re-trapping of electrons in this region. The main process gov- erning the flow of photocurrent for this type of device at 77K is photo-excitation from the Quantum Dot (QD)s to the excited state in the Quantum Well (QW) and further thermal excitation. If the electrons are mainly transported in the matrix or the well at 77K is presently not clear. For the vertical carrier transport DWELL QDIP at 77K, the wavelength response could be tuned by altering the applied voltage. At higher voltages, the dominant process was found to be photo-excitation from the QDs to the excited state in the QW followed by thermal assisted tunneling into the GaAs-matrix. At lower voltages, photo-excitation from the QDs directly into the the GaAs-matrix was the predominant process. The dark current level in the vertical QDIPs was found to be 1.5 to 5 orders of magnitude smaller than for the QWIP measured at 77K. Furthermore, the QDIP was found to be close to polarization independent. As expected the QWIP had a reduced sensitivity to normal incident light. The existence of this signal was attributed to interface scattering of light inside the device.
6

Study of Resistance Switching Physical Mechanism in Hafnium Oxide Thin Film for Resistive Random Access Memory

Lou, Jyun-Hao 14 July 2012 (has links)
This study is focuses on the resistance switching physical mechanism in hafnium oxide (HfO2) of resistive random access memory (RRAM). HfO2 was taken as the resistance switching layer because HfO2 is extremely compatible with the prevalent complementary metal oxide semiconductor (CMOS) process. The detail physical mechanism is studied by the stable RRAM device (Ti/HfO2/TiN), which is offered from Industrial Technology Research Institute (ITRI). In this study, the resistance switching property of two different forming conductions are compared, including DC sweeping forming and AC pulse forming. In general, forming is a pivotal process in resistance random access memory (RRAM) to activate the resistance switching behavior. However, over forming would lead to device damage. The overshoot current has been considered as a degradation reason during the forming process. The circuit design is used to obtain the overshoot effect of DC sweeping forming by oscilloscope and semiconductor parameter analyzer system. The quantity of charge through the switching layer has been proven as the key element in the formation of the conduction path. Ultra-fast pulse forming can form a discontinuous conduction path to reduce the operation power.
7

Study of carrier transport, trapping and optical nonlinearities in polymers promising for optoelectronic applications / Krūvio pernašos ir pagavos bei optinių netiesiškumų tyrimas polimerinėse medžiagose, perspektyviose optoelektronikos taikymams

Pranaitis, Mindaugas 01 October 2012 (has links)
The main goals of the thesis are advanced characterization by complementary optical and electrical methods of organic semiconductors and the complexes of DNA (deoxyribonucleic acid) designed with purposefully controllable properties for opto-, photo- and electrical applications in modern device engineering. It was demonstrated that the polymer photovoltaic device having an active layer with donor/transmitter/acceptor structure bearing polar molecules exhibits the improvement of the external quantum efficiency associated with the growth of the mobility and reduced potential barrier for charge injection or extraction from the electrodes. The impact of the trapping states and their energetical and spatial distribution on the charge transport properties of organic semiconductors was revealed by several different complementary methods. It was demonstrated that carrier trapping is effectively involved in the charge transport phenomena, depending on the exciting light spectral range and applied electrical field. The influence of the hybrid DNA, dyes and silica material complexes on the optical properties of bio-organic materials was proven. Later the new cationic surfactant with a high efficiency third order nonlinear optical properties was demonstrated, which extended the range of available solvents for DNA complex. / Disertacija skirta išanalizuoti veiksnius, įtakojančius krūvio pernašą ir pagavimą šiuolaikinėse organinėse medžiagose skirtose optoelektronikai, bei ištirti DNR bio-molekulių įtaką elektrinėms bei optinėms medžiagų savybėms. Eksperimentiškai nustatyta, kad polimerinės medžiagos turinčios aktyviojo sluoksnio struktūrą: donoras/pernašos grandis/akceptorius ir chemiškai sujungtos su polinėmis molekulėmis, pasižymi išorinio kvantinio našumo padidėjimu, susijusiu su judrio išaugimu ir sumažėjusiu potencialo barjeru krūvininkų injekcijai ar ekstrakcijai iš elektrodų. Panaudojant keletą skirtingų, bet papildančių eksperimentinių metodų, parodyta pagavimo būsenų ir jų energetinio bei erdvinio pasiskirstymo įtaka krūvininkų pernašos savybėms organiniuose puslaidininkiuose. Pademonstruota, kad krūvininkų pagavimas efektyviai lemia krūvio pernašos reiškinius ir priklauso nuo žadinančios šviesos spektro pločio bei pridėto elektrinio lauko. Nustatyta DNR komplekso, sudaryto iš dažo ir silikagelio matricos, įtaka optinėms medžiagos savybėms. Taip pat pademonstruoti nauji katijoniniai surfaktantai su efektyviomis trečios eilės netiesinės optikos savybėmis, kurie išplečia tirpiklių pasirinkimą gaminant DNR kompleksus.
8

Krūvio pernašos ir pagavos bei optinių netiesiškumų tyrimas polimerinėse medžiagose, perspektyviose optoelektronikos taikymams / Study of Carrier Transport, Trapping and Optical Nonlinearities in Polymer Promising for Optoelectronic Applications

Pranaitis, Mindaugas 01 October 2012 (has links)
Disertacija skirta išanalizuoti veiksnius, įtakojančius krūvio pernašą ir pagavimą šiuolaikinėse organinėse medžiagose skirtose optoelektronikai, bei ištirti DNR bio-molekulių įtaką elektrinėms bei optinėms medžiagų savybėms. Eksperimentiškai nustatyta, kad polimerinės medžiagos turinčios aktyviojo sluoksnio struktūrą: donoras/pernašos grandis/akceptorius ir chemiškai sujungtos su polinėmis molekulėmis, pasižymi išorinio kvantinio našumo padidėjimu, susijusiu su judrio išaugimu ir sumažėjusiu potencialo barjeru krūvininkų injekcijai ar ekstrakcijai iš elektrodų. Panaudojant keletą skirtingų, bet papildančių eksperimentinių metodų, parodyta pagavimo būsenų ir jų energetinio bei erdvinio pasiskirstymo įtaka krūvininkų pernašos savybėms organiniuose puslaidininkiuose. Pademonstruota, kad krūvininkų pagavimas efektyviai lemia krūvio pernašos reiškinius ir priklauso nuo žadinančios šviesos spektro pločio bei pridėto elektrinio lauko. Nustatyta DNR komplekso, sudaryto iš dažo ir silikagelio matricos, įtaka optinėms medžiagos savybėms. Taip pat pademonstruoti nauji katijoniniai surfaktantai su efektyviomis trečios eilės netiesinės optikos savybėmis, kurie išplečia tirpiklių pasirinkimą gaminant DNR kompleksus. / The main goals of the thesis are advanced characterization by complementary optical and electrical methods of organic semiconductors and the complexes of DNA (deoxyribonucleic acid) designed with purposefully controllable properties for opto-, photo- and electrical applications in modern device engineering. It was demonstrated that the polymer photovoltaic device having an active layer with donor/transmitter/acceptor structure bearing polar molecules exhibits the improvement of the external quantum efficiency associated with the growth of the mobility and reduced potential barrier for charge injection or extraction from the electrodes. The impact of the trapping states and their energetical and spatial distribution on the charge transport properties of organic semiconductors was revealed by several different complementary methods. It was demonstrated that carrier trapping is effectively involved in the charge transport phenomena, depending on the exciting light spectral range and applied electrical field. The influence of the hybrid DNA, dyes and silica material complexes on the optical properties of bio-organic materials was proven. Later the new cationic surfactant with a high efficiency third order nonlinear optical properties was demonstrated, which extended the range of available solvents for DNA complex.
9

Study of Minority Carrier Lifetime and Transport in InAs/InAsSb type-II Superlattices Using a Real-Time Baseline Correction Method

January 2016 (has links)
abstract: Sb-based type-II superlattices (T2SLs) are potential alternative to HgCdTe for infrared detection due to their low manufacturing cost, good uniformity, high structural stability, and suppressed Auger recombination. The emerging InAs/InAsSb T2SLs have minority carrier lifetimes 1-2 orders of magnitude longer than those of the well-studied InAs/InGaSb T2SLs, and therefore have the potential to achieve photodetectors with higher performance. This work develops a novel method to measure the minority carrier lifetimes in infrared materials, and reports a comprehensive characterization of minority carrier lifetime and transport in InAs/InAsSb T2SLs at temperatures below 77 K. A real-time baseline correction (RBC) method for minority carrier lifetime measurement is developed by upgrading a conventional boxcar-based time-resolved photoluminescence (TRPL) experimental system that suffers from low signal-to-noise ratio due to strong low frequency noise. The key is to modify the impulse response of the conventional TRPL system, and therefore the system becomes less sensitive to the dominant noise. Using this RBC method, the signal-to-noise ratio is improved by 2 orders of magnitude. A record long minority carrier lifetime of 12.8 μs is observed in a high-quality mid-wavelength infrared InAs/InAsSb T2SLs at 15 K. It is further discovered that this long lifetime is partially due to strong carrier localization, which is revealed by temperature-dependent photoluminescence (PL) and TRPL measurements for InAs/InAsSb T2SLs with different period thicknesses. Moreover, the PL and TRPL results suggest that the atomic layer thickness variation is the main origin of carrier localization, which is further confirmed by a calculation using transfer matrix method. To study the impact of the carrier localization on the device performance of InAs/InAsSb photodetectors, minority hole diffusion lengths are determined by the simulation of external quantum efficiency (EQE). A comparative study shows that carrier localization has negligible effect on the minority hole diffusion length in InAs/InAsSb T2SLs, and the long minority carrier lifetimes enhanced by carrier localization is not beneficial for photodetector operation. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2016
10

Fundamental Study on Carrier Transport in Si Nanowire MOSFETs with Smooth Nanowire Surfaces / 表面平坦化処理を施したSiナノワイヤMOSFETにおけるキャリヤ輸送の基礎研究

Morioka, Naoya 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18286号 / 工博第3878号 / 新制||工||1595(附属図書館) / 31144 / 京都大学大学院工学研究科電子工学専攻 / (主査)教授 木本 恒暢, 教授 白石 誠司, 准教授 浅野 卓 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM

Page generated in 0.076 seconds