• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 5
  • 2
  • Tagged with
  • 36
  • 11
  • 11
  • 11
  • 8
  • 8
  • 7
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

RELATING GAS HYDRATE SATURATION TO DEPTH OF SULFATE-METHANE TRANSITION

Bhatnagar, Gaurav, Chapman, Walter G., Hirasaki, George J., Dickens, Gerald R., Dugan, Brandon 07 1900 (has links)
Gas hydrate can precipitate in pore space of marine sediment when gas concentrations exceed solubility conditions within a gas hydrate stability zone (GHSZ). Here we present analytical expressions that relate the top of the GHSZ and the amount of gas hydrate within the GHSZ to the depth of the sulfate-methane transition (SMT). The expressions are strictly valid for steady-state systems in which (1) all gas is methane, (2) all methane enters the GHSZ from the base, and (3) no methane escapes the top through seafloor venting. These constraints mean that anaerobic oxidation of methane (AOM) is the only sink of gas, allowing a direct coupling of SMT depth to net methane flux. We also show that a basic gas hydrate saturation profile can be determined from the SMT depth via analytical expressions if site-specific parameters such as sedimentation rate, methane solubility and porosity are known. We evaluate our analytical model at gas hydrate bearing sites along the Cascadia margin where methane is mostly sourced from depth. The analytical expressions provide a fast and convenient method to calculate gas hydrate saturation for a given geologic setting.
12

ETS in Tidal Records

Alba, Sequoia Kia Marie 12 1900 (has links)
xiii, 75 p. : ill. (some col.) / Uplift rates associated with 12 episodic tremor and slip events on the Cascadia Subduction Zone occurring between 1997 and 2010 have been determined from hourly water level records from 4 NOAA tide gauges (Neah Bay, Port Angeles, Port Townsend, and Seattle). Displacements inferred from water levels generally agree with displacements inferred from modeling GPS data. Examination of uplift between events shows an inter-event deformation rate approximately equal in magnitude, with ETS events, on average, releasing strain accumulated between events, suggesting that ETS is consistent with the elastic rebound theory. Additionally, while the GPS record only extends to the late 1990s and the tremor record includes only recent decades for Cascadia, tidal records in the Pacific Northwest and around the world span many decades. Thus, by showing that ETS can be resolved in tidal records we open up the possibility that tidal records could be used to study ETS where other tools are not available. This thesis contains unpublished coauthored material. / Committee in charge: Dr. David A. Schmidt, Chair; Dr. Ray J. Weldon, Advisor; Dr. Dean Livelybrooks, Member
13

Rupture models of the great 1700 Cascadia earthquake based on microfossil paleoseismic observations

Wang, Pei-Ling 24 August 2012 (has links)
Past earthquake rupture models used to explain paleoseismic estimates of coastal subsidence during the great AD 1700 Cascadia earthquake have assumed a uniform slip distribution along the megathrust. Here, we infer heterogeneous slip for the Cascadia margin in AD 1700 that is analogous to slip distributions during instrumentally recorded great subduction earthquakes worldwide. The assumption of uniform distribution in previous rupture models was due partly to the large uncertainties of available paleoseismic data used to constrain the models. In this work, we use more precise estimates of subsidence in 1700 from detailed tidal microfossil studies. We develop a 3-D elastic dislocation model that allows the slip to vary both along strike and in the dip direction. Despite uncertainties in the updip and downdip slip extents, the more precise subsidence estimates are best explained by a model with along-strike slip heterogeneity, with multiple patches of high moment release separated by areas of low moment release. For example, in AD 1700 there was very little slip near Alsea Bay, Oregon (~ 44.5°N), an area that coincides with a segment boundary previously suggested on the basis of gravity anomalies. A probable subducting seamount in this area may be responsible for impeding rupture during great earthquakes. Our results highlight the need for precise, high-quality estimates of subsidence or uplift during prehistoric earthquakes from the coasts of southern British Columbia, northern Washington (north of 47°N), southernmost Oregon, and northern California (south of 43°N), where slip distributions of prehistoric earthquakes are poorly constrained. / Graduate
14

Models of tsunamigenic earthquake rupture along the west coast of North America

Sypus, Matthew 02 January 2020 (has links)
The west coast of North America faces the risk of tsunamis generated by seismic rupture in three regions, namely, the Cascadia subduction zone extending from southwestern British Columbia to northern California, the southern Queen Charlotte margin in the Haida Gwaii area, and the Winona Basin just northeast of Vancouver Island. In this thesis, I construct tsunamigenic rupture models with a 3-D elastic half-space dislocation model for these three regions. The tsunami risk is the highest along the Cascadia coast, and many tsunami source models have been developed and used in the past. In efforts to improve the Cascadia tsunami hazard assessment, I use an updated Cascadia fault geometry to create 9 tsunami source models which include buried, splay-faulting, and trench-breaching rupture. Incorporated in these scenarios is a newly-proposed splay fault based on minor evidence found in seismic reflection images off Vancouver Island. To better understand potential rupture boundaries of the Cascadia megathrust rupture, I also model deformation caused by the 1700 C.E. great Cascadia earthquake that fit updated microfossil-based paleoseismic coastal subsidence estimates. These estimates validate the well-accepted along-strike heterogenic rupture of the 1700 earthquake but suggest greater variations in subsidence along the coast. It is recognized that the Winona Basin area just north of the Cascadia subduction zone may have the potential to host a tsunamigenic thrust earthquake, but it has not been formally included in tsunami hazard assessments. There is a high degree of uncertainty in the tectonics of the area, the presence of a subduction “megathrust”, fault geometry, and rupture boundaries. Assuming worst-case scenarios and considering the uncertainties, I construct a fault geometry using seismic images and generate six tsunami sources with buried and trench-breaching rupture in which downdip rupture extent is varied. The Mw 7.8 2012 Haida Gwaii earthquake and its large tsunami demonstrated the presence of a subduction megathrust and its capacity of hosting tsunamigenic rupture, but little has been done to include future potential thrust earthquakes in the Haida Gwaii region in tsunami hazard assessment. To fill this knowledge gap, I construct a new megathrust geometry using seismic reflection images and receiver-function results and produce nine tsunami sources for Haida Gwaii, which include buried and trench-breaching ruptures. In the strike direction, the scenarios include long ruptures from mid-way between Haida Gwaii and Vancouver Island to mid-way between Haida Gwaii and the southern tip of Alaskan Panhandle, and shorter rupture scenarios north and south of the main rupture of the 2012 earthquake. For all the tsunami source and paleoseismic scenarios, I also calculate stress drop along the fault. Comparison of the stress drop results with those of real megathrust earthquakes worldwide indicates that these models are mechanically realistic. / Graduate
15

Integrating Seismic Property Models with Gravity Data along the Cascadia Forearc

Rahul Bhattacharya (17547897) 04 December 2023 (has links)
<p dir="ltr">The Cascadia margin in the Pacific Northwest of US is characterized by the subduction of the young and warm Juan De Fuca beneath the North American plate. This region shows strong correlations in spatial heterogeneities in geophysical observations such as thickness of low shear wave velocity zones in the lower crust, tremors distribution, intraslab seismicity, topography, uplift rates, and Bouguer gravity anomalies. In this thesis, both 3D and 2.5D forward gravity modeling have been conducted to understand the composition of the materials at ~20-40 km along the Cascadia subduction margin, that can explain the spatial heterogeneities by linking them together.</p>
16

Innovating change in the faculty model : a study of voices and influences in defining faculty role at Cascadia Community College

Buck, Sharon Thompson 28 April 2004 (has links)
The founders of Cascadia Community College changed faculty role and duties as they designed a new college. The college founders chose which themes of learning reform would be enacted by faculty in this new setting. They determined what elements of traditional roles continued to be important and what new expectations would be articulated. They decided what themes would become the center of faculty role in the creation of the new college. The study seeks to establish the themes of reform that were adopted by this college and how the founders expected those reforms to reside in, change, and influence faculty role. Through interviews with founding college members, the researcher, herself a participant in the founding of the college, triangulated the voices of the key participants with the publications of the new college that were related to faculty role. Themes that emerged from the study were outcomes, interdisciplinarity, organization and structure, innovation, technology, global/multicultural perspectives, complexity, and expectation for traits. A new view of expanded faculty role expectations is explored. This role is reflective of many themes seen in reform literature involving tenets of the learning college, the shift from teaching to learning, and outcomes-grounded teaching. A model is presented to explain the interrelatedness of the themes and the new perspective on teaching in the reformed college. / Graduation date: 2004
17

From fault dynamics to seismic hazard assessment

Michel, Sylvain January 2018 (has links)
My work focused on the development of improved methodologies for the evaluation of seismic hazard and its related uncertainties, based on the study of active faults systems and dynamic modelling of the seismic cycle. I worked in particular on the probabilistic estimate of a fault's maximum magnitude earthquake and of its return period. Those parameters are indeed crucial to estimate seismic hazard. Seismicity can be viewed as a stochastic process which is constrained by the principle of moment conservation: seismic ruptures must in principle rupture fault portions which had accumulated a deficit of slip, in view of their long term slip rate, during the interseismic period. In Chapter 1, I explain how we implemented those constraints in the evaluation of the probability distribution describing the magnitude and return period of the largest earthquake, propagating the geodetic uncertainties up to the hazard calculation. We applied this methodology to the Parkfield Segment of the San Andreas Fault, where the seismic cycle is particularly well documented. Our study implies potential maximum magnitude between 6.5 and 7.5, with a return period of 140 to 300 years. In Chapter 2, we applied the same methodology to the Cascadia subduction zone, known to have produced a M~9 earthquake in 1700 but where the seismic hazard remains poorly constrained. As part of this study we determined a model of interseismic coupling and of fault slip due to Slow Slip Events using an Independent Component Analysis-based inversion method. Finally, in Chapter 3, I use dynamic modelling to tackle the problem of partial ruptures. Large earthquakes tend to be confined to fault areas locked in the interseismic period but they often rupture them only partially. For example, during the 2015 M7.8 Gorkha earthquake, Nepal, a slip pulse propagating along-strike unzipped the bottom edge of the locked portion of the Main Himalayan Thrust. The lower edge of the rupture produced dominant high-frequency (>1 Hz) radiation of seismic waves. We showed that similar partial ruptures occur spontaneously in a simple dynamic model of earthquake sequences on a planar fault without mechanical, frictional and geometrical heterogeneities.
18

JOINT SEISMIC/ELECTRICAL EFFECTIVE MEDIUM MODELLING OF HYDRATE-BEARING MARINE SEDIMENTS AND AN APPLICATION TO THE VANCOUVER ISLAND MARGIN

Ellis, M.H., Minshull, T.A., Sinha, M.C., Best, Angus I. 07 1900 (has links)
Remote determination of the hydrate content of marine sediments remains a challenging problem. In the absence of boreholes, the most commonly used approach involves the measurement of Pwave velocities from seismic experiments. A range of seismic effective medium methods has been developed to interpret these velocities in terms of hydrate content, but uncertainties about the pore-scale distribution of hydrate can lead to large uncertainties in this interpretation. Where borehole geophysical measurements are available, electrical resistivity is widely used as a proxy for hydrate content, and the measurement of resistivity using controlled source electromagnetic methods shows considerable promise. However, resistivity is commonly related to hydrate content using Archie’s law, an empirical relationship with no physical basis that has been shown to fail for hydrate-bearing sediments. We have developed an electrical effective medium method appropriate to hydrate-bearing sediments based on the application of a geometric correction to the Hashin-Shrikman conductive bound, and tested this method by making resistivity measurements on artificial sediments of known porosity. We have adapted our method to deal with anisotropic grains such as clay particles, and combined it with a well-established seismic effective medium method to develop a strategy for estimating the hydrate content of marine sediments based on a combination of seismic and electrical methods. We have applied our approach to borehole geophysical data from Integrated Ocean Drilling Program Expedition 311 on the Vancouver Island margin. Hydrate saturations were determined from resistivity logs by adjusting the geometric factor in areas of the log where hydrate was not present. This value was then used over the entire resistivity log. Hydrate saturations determined using this method match well those determined from direct measurements of the methane content of pressurized cores.
19

A Call for Bioregional Governance in Cascadia: Shaping an Ecological Identity in the Land of Falling Waters

Freed, Molly D 01 January 2015 (has links)
In recent years, as globalization has taken a toll on North Americans’ “sense of place,” there has been a swelling interest in the identification of bioregions: spaces delineated by their natural borders and shaped by the cultures that arise within them. Bioregionalism, the movement that arose from this scalar shift, emphasizes the “reinhabitation” of bioregions through a deep understanding and attachment between residents and their watershed and habitat. This thesis argues for a shift to bioregional-scale environmental governance in the Cascadian bioregion (the Pacific Northwest) via an interstate compact. Using the Great Lakes bioregion as a comparable case study, this thesis goes on to examine the effects of neoliberalization on two resulting cross-border institutions, the Great Lakes Commission and the Council of the Great Lakes Region. It ultimately concludes that a shared ecological identity is imperative for preserving the ethos of bioregionalism in future policymaking, rather than just the scale. In an effort to create a tangible path towards the shaping of this identity, a communications framework is presented. Based on lessons from the Great Lakes case studies, this framework utilizes “condensation symbols” and the “triple appeals principle” as possible tools for Cascadian activists to leverage moving forward.
20

A Disaster risk management approach to seismic risk on Vancouver Island, British Columbia

Seemann, Mark R. 02 January 2013 (has links)
Communities on Vancouver Island, British Columbia face significant exposure to damaging earthquakes. This seismic risk arises not only from the Island’s proximity to crustal, sub-crustal and subduction earthquake sources in the Cascadia Subduction Zone and from their associated aftershock sequences, but also from environmental (natural and human-made) and social vulnerabilities in Vancouver Island communities and their current capacities to respond and recover from a large seismic event. Seeking to 1) assist community officials and the general public to better understand the scope of the earthquake risk on Vancouver Island; 2) raise awareness of the gaps in Vancouver Island’s risk assessment; 3) encourage and facilitate comprehensive seismic risk discussions at all levels of governance; and 4) offer quantitative data on which to base sound funding and policy decisions, this dissertation offers three new studies, presented in paper format, toward the comprehensive management of seismic risk on Vancouver Island. The first paper, reviews the components of risk and, building on international risk management standards and best practices, develops a new, comprehensive Disaster Risk Management (DRM) Framework for practitioners. This DRM Framework is then used to review existing knowledge of Vancouver Island’s seismic risk. A number of information gaps are identified, and two in particular, mainshock and aftershock hazard assessment, are targeted for further analysis. / Graduate

Page generated in 0.3119 seconds