Spelling suggestions: "subject:"cascadia subduction zone"" "subject:"cascadian subduction zone""
1 |
Sources of seismic hazard in British Columbia: what controls earthquakes in the crust?Balfour, Natalie Joy 19 October 2011 (has links)
This thesis examines processes causing faulting in the North American crust in the
northern Cascadia subduction zone. A combination of seismological methods, including source mechanism determination, stress inversion and earthquake relocations
are used to determine where earthquakes occur and what forces influence faulting.
We also determine if forces that control faulting can be monitored using seismic
anisotropy. Investigating the processes that contribute to faulting in the crust is
important because these earthquakes pose significant hazard to the large population
centres in British Columbia and Washington State.
To determine where crustal earthquakes occur we apply double-difference earthquake
relocation techniques to events in the Fraser River Valley, British Columbia, and the
San Juan Islands, Washington. This technique is used to identify "hidden" active
structures using both catalogue and waveform cross-correlation data. Results have
significantly reduced uncertainty over routine catalogue locations and show lineations
in areas of clustered seismicity. In the Fraser River Valley these lineations or streaks
appear to be hidden structures that do not disrupt near-surface sediments; however,
in the San Juan Islands the identified lineation can be related to recently mapped
surface expressions of faults.
To determine forces that influence faulting we investigate the orientation and sources
of stress using Bayesian inversion results from focal mechanism data. More than 600
focal mechanisms from crustal earthquakes are calculated to identify the dominant
style of faulting and inverted to estimate the principal stress orientations and the
stress ratio. Results indicate the maximum horizontal compressive stress (SHmax)
orientation changes with distance from the subduction interface, from margin-normal
along the coast to margin-parallel further inland. We relate the margin-normal stress
direction to subduction-related strain rates due to the locked interface between the
North America and Juan de Fuca plates just west of Vancouver Island. Further
from the margin the plates are coupled less strongly and the margin-parallel SHmax
relates to the northward push of the Oregon Block. Active faults around the region
are generally thrust faults that strike east-west and might accommodate the margin-
parallel compression.
Finally, we consider whether crustal anisotropy can be used as a stress monitoring
tool in this region. We identify sources and variations of crustal anisotropy using
shear-wave splitting analysis on local crustal earthquakes. Results show spatial variations in fast directions, with margin-parallel fast directions at most stations and
margin-perpendicular fast directions at stations in the northeast of the region. To
use seismic anisotropy as a stress indicator requires identifying which stations are primarily in
uenced by stress. We determine the source of anisotropy at each station by
comparing fast directions from shear-wave splitting results to the SHmax orientation.
Most stations show agreement between these directions suggesting that anisotropy is
stress-related. These stations are further analysed for temporal variations and show
variation that could be associated with earthquakes (ML 3{5) and episodic tremor
and slip events.
The combination of earthquake relocations, source mechanisms, stress and anisotropy
is unique and provides a better understanding of faulting and stress in the crust of
northern Cascadia. / Graduate
|
2 |
Late holocene coseismic subsidence and coincident tsunamis, southern Cascadia subduction zone, Hookton Slough, WIGI (Humboldt Bay), California /Patton, Jason Robert. January 2004 (has links) (PDF)
Thesis (M.S.)--Humboldt State University, 2004. / Includes bibliographical references (leaves 59-65). Also available via the Internet.
|
3 |
Models of tsunamigenic earthquake rupture along the west coast of North AmericaSypus, Matthew 02 January 2020 (has links)
The west coast of North America faces the risk of tsunamis generated by seismic rupture in three regions, namely, the Cascadia subduction zone extending from southwestern British Columbia to northern California, the southern Queen Charlotte margin in the Haida Gwaii area, and the Winona Basin just northeast of Vancouver Island. In this thesis, I construct tsunamigenic rupture models with a 3-D elastic half-space dislocation model for these three regions. The tsunami risk is the highest along the Cascadia coast, and many tsunami source models have been developed and used in the past. In efforts to improve the Cascadia tsunami hazard assessment, I use an updated Cascadia fault geometry to create 9 tsunami source models which include buried, splay-faulting, and trench-breaching rupture. Incorporated in these scenarios is a newly-proposed splay fault based on minor evidence found in seismic reflection images off Vancouver Island. To better understand potential rupture boundaries of the Cascadia megathrust rupture, I also model deformation caused by the 1700 C.E. great Cascadia earthquake that fit updated microfossil-based paleoseismic coastal subsidence estimates. These estimates validate the well-accepted along-strike heterogenic rupture of the 1700 earthquake but suggest greater variations in subsidence along the coast. It is recognized that the Winona Basin area just north of the Cascadia subduction zone may have the potential to host a tsunamigenic thrust earthquake, but it has not been formally included in tsunami hazard assessments. There is a high degree of uncertainty in the tectonics of the area, the presence of a subduction “megathrust”, fault geometry, and rupture boundaries. Assuming worst-case scenarios and considering the uncertainties, I construct a fault geometry using seismic images and generate six tsunami sources with buried and trench-breaching rupture in which downdip rupture extent is varied. The Mw 7.8 2012 Haida Gwaii earthquake and its large tsunami demonstrated the presence of a subduction megathrust and its capacity of hosting tsunamigenic rupture, but little has been done to include future potential thrust earthquakes in the Haida Gwaii region in tsunami hazard assessment. To fill this knowledge gap, I construct a new megathrust geometry using seismic reflection images and receiver-function results and produce nine tsunami sources for Haida Gwaii, which include buried and trench-breaching ruptures. In the strike direction, the scenarios include long ruptures from mid-way between Haida Gwaii and Vancouver Island to mid-way between Haida Gwaii and the southern tip of Alaskan Panhandle, and shorter rupture scenarios north and south of the main rupture of the 2012 earthquake. For all the tsunami source and paleoseismic scenarios, I also calculate stress drop along the fault. Comparison of the stress drop results with those of real megathrust earthquakes worldwide indicates that these models are mechanically realistic. / Graduate
|
4 |
A Disaster risk management approach to seismic risk on Vancouver Island, British ColumbiaSeemann, Mark R. 02 January 2013 (has links)
Communities on Vancouver Island, British Columbia face significant exposure to damaging earthquakes. This seismic risk arises not only from the Island’s proximity to crustal, sub-crustal and subduction earthquake sources in the Cascadia Subduction Zone and from their associated aftershock sequences, but also from environmental (natural and human-made) and social vulnerabilities in Vancouver Island communities and their current capacities to respond and recover from a large seismic event. Seeking to 1) assist community officials and the general public to better understand the scope of the earthquake risk on Vancouver Island; 2) raise awareness of the gaps in Vancouver Island’s risk assessment; 3) encourage and facilitate comprehensive seismic risk discussions at all levels of governance; and 4) offer quantitative data on which to base sound funding and policy decisions, this dissertation offers three new studies, presented in paper format, toward the comprehensive management of seismic risk on Vancouver Island.
The first paper, reviews the components of risk and, building on international risk management standards and best practices, develops a new, comprehensive Disaster Risk Management (DRM) Framework for practitioners. This DRM Framework is then used to review existing knowledge of Vancouver Island’s seismic risk. A number of information gaps are identified, and two in particular, mainshock and aftershock hazard assessment, are targeted for further analysis. / Graduate
|
5 |
<b>Using ambient noise tomography to reveal tectonic processes in the southern Cascadia forearc</b>Brandon J Herr (19200814) 24 July 2024 (has links)
<p dir="ltr">The Cascadia subduction zone features many along-strike variations in geophysical signatures that appear independent of properties in the subducting Juan de Fuca plate. Past studies have hypothesized that controls on these variations, namely subcretion, seem linked to overriding plate characteristics but may be influenced by characteristics of the downgoing slab as well. Nowhere is this more apparent than in southern Cascadia, which features the highest seismogenesis, broadest forearc topography, and lowest Bouguer gravity along the Cascadia margin. Additionally, the northward migration of deformation related to the San Andreas fault’s evolution and potential subslab buoyancies introduce further complexities making it difficult to parse contributions of tectonic processes to individual geophysical observations. To better understand contributions from Cascadia subduction and San Andreas evolution on tectonic processes, 60 Magseis Fairview nodal seismometers were deployed in southern Cascadia (Klamath Mountains) between April and May of 2020. We perform ambient noise tomography using Rayleigh and Love waves to constrain radial anisotropy and reveal seismic characteristics in the forearc. We find low VSV (<3.4 km/s) in the lower crust of the forearc consistent with previous studies. This is paired with high (>10%) positive radial anisotropy suggesting these materials are dominated by (sub)horizontal fabrics. We also observe relatively high VSV and VSH and negative radial anisotropy (~ -10%) in the upper crust of the forearc to ~10 km depth. These results suggest that the upper crust, which is dominated by the Klamath terrane, is characterized by (sub-vertical) deformational fabrics, likely related to brittle deformation superimposed on the accretionary history of the Klamath terrane, while the lower crust shows fabrics consistent with what would be expected due to basal accretion of oceanic crust (e.g, sedimentary rocks with or without basaltic slivers). The correlation of positive radial anisotropy with low shear-wave velocities (~3.4 km/s), low Bouguer gravity, high conductivity, and high rates of seismogenic activity (LFEs, tremor distribution, and episodic slow slip events) suggest that this basally accreted material may be infiltrated by fluids derived from the downgoing oceanic lithosphere.</p>
|
6 |
Melting in the Mantle Wedge: Quantifying the Effects of Crustal Morphology and Viscous Decoupling on Melt Production with Application to the Cascadia Subduction ZoneYang, Jiaming 07 September 2017 (has links)
Arc magmatism is sustained by the complex interactions between the subducting slab, the overriding plate, and the mantle wedge. Partial melting of mantle peridotite is achieved by fluid-induced flux melting and decompression melting due to upward flow. The distribution of melting is sensitive to temperature, the pattern of flow, and the pressure in the mantle wedge. The arc front is the surface manifestation of partial melting in the mantle wedge and is characterized by a narrow chain of active volcanoes that migrate in time. The conventional interpretation is that changes in slab dip angle lead to changes in the arc front position relative to the trench. We explore an alternative hypothesis: evolution of the overlying plate, specifically thickening of the arc root, causes arc front migration. We investigate the effects of varying crustal morphology and viscous decoupling of the shallow slab-mantle interface on melt production using 2D numerical models involving a stationary overriding plate, a subducting plate with prescribed motion, and a dynamic mantle wedge. Melt production is quantified using a hydrous melting parameterization. We conclude: 1) Localized lithospheric thickening shifts the locus of melt production trenchward while thinning shifts melting landward. 2) Inclined LAB topography modulates the asthenospheric flow field, producing a narrow, well-defined arc front. 3) Thickening of the overriding plate exerts increased torque on the slab, favoring shallowing of the dip angle. 4) Viscous decoupling produces a cold, stagnant forearc mantle but promotes arc front melting due to reduction in the radius of corner flow, leading to higher temperatures at the coupling/decoupling transition.
|
7 |
New observations of relative sea level from the Northern Cascadia Subduction Zone: Cordilleran ice sheet history and mantle rheologyBelanger, Kevin Karl 26 April 2013 (has links)
New relative sea-level (RSL) observations dating from the late Pleistocene and early Holocene, during and after the collapse of the Cordilleran ice-sheet (CIS), are provided for two regions in southern coastal British Columbia. They record the glacial isostatic adjustment (GIA) response of the Earth to the changing surface load of the waning CIS. The data provide a new RSL curve for Sechelt, on the mainland coast north of Vancouver, and extend and revise a previously constructed curve for Barkley Sound on the west coast of Vancouver Island. The observations create a new profile of RSL curves oriented southwest-northeast across Vancouver Island and the Strait of Georgia. A previously-defined profile of RSL curves is oriented northwest-southeast profile along the east coast of Vancouver Island. The two profiles intersect in the central Strait of Georgia.
The new RSL curves sample different parts of the Cascadia Subduction Zone (CSZ) and provide constraints on the history of the CIS. The Juan de Fuca plate subducts beneath the North American plate in roughly the same southwest to northeast direction as the RSL profile. GIA modelling of the RSL observations along this profile may indicate spatial variations related to the structure of the Cascadia Subduction Zone (CSZ). The CIS flowed roughly from northeast to southwest over the regions of interest. RSL observations along this path indicate how sea-level change differed with distance from the edge of the ice-sheet towards its centre.
The CIS model of James et al. (2009b) is refined to fit observed sea levels while applying glacial geological constraints to regional ice sheet advance and retreat. Sea level in Barkley Sound dropped from greater than 27 m elevation before 15 cal kyr BP to -46 m below present around 12 cal kyr BP. At Sechelt, sea level closely follows the same trend as in the central Strait of Georgia, dropping from over 150 m before 14 cal kyr BP and falling past present levels after 12.4 cal kyr BP to a poorly constrained lowstand between 12 and 9 cal kyr BP.
The initial crustal uplift rate near Sechelt was at least 85 mm/yr, comparable to that of the central Strait of Georgia. The sea-level observations are best fit with predictions employing an Earth model with a 60-km effective lithosphere thickness and asthenospheric viscosity and thickness of 4 × 1019 Pa s and 380 km, respectively. The transition zone and lower mantle viscosities are based on the VM2 Earth model (Peltier 2002). Sea level in Barkley Sound fell quickly (15-30 mm/yr), and observed sea level is best fit with the same asthenospheric viscosity, but with a thinner 30-km thick lithosphere, consistent with the regional tectonic structure. Revisions to the ice model are consistent with radiocarbon constraints on ice sheet history and provide good agreement with the observed sea-level history for the study regions as well as RSL histories previously described for the Strait of Georgia and southern Vancouver Island. / Graduate / 0372
|
8 |
Geometry, kinematics, and Quaternary activity of the brittle Leech River fault zone, southern Vancouver Island, British Columbia, CanadaGraham, Audrey 06 February 2018 (has links)
Southern Vancouver Island lies on the forearc of the Cascadia subduction zone, north of a concave bend in the plate boundary centred around the Olympic Mountains. The bend in the margin coincides with a significant decrease in northward-directed trench-parallel forearc migration, and a network of active crustal faults in the Puget Lowland east of the Olympic Mountains accommodates permanent north-south shortening and transpression. The nature of forearc deformation on southern Vancouver Island is less well constrained, due in part to the unknown extent and kinematics of active crustal faulting. Recent work has shown that a brittle fault zone associated with the Eocene terrane-bounding Leech River fault has produced at least two surface-rupturing earthquakes in the late Quaternary.
I use LiDAR-derived topographic data, slip-sense indicator analysis of slickenlines on fault planes, electrical resistivity tomography (ERT), and ground-penetrating radar (GPR) to investigate the geometry, kinematics, and Quaternary activity along the eastern half of the active, brittle Leech River fault zone. My mapping reveals a complex, near-vertical zone up to 1 km wide and 25 km long that exhibits many characteristics of a strike-slip fault. Displaced Quaternary deposits are observed directly at two sites in the western 8 km of the study area, and inferred through geophysical imagery, topographic data, and liquefaction features to extend to the eastern terrestrial extent of the fault zone towards previously mapped active faults in the Juan de Fuca Strait and the Darrington-Devil’s Mountain fault zone in western Washington. I use fault kinematics and geometry to show that the eastern Leech River fault zone has been reactivated as a right-lateral strike-slip fault that accommodates forearc deformation within the modern stress field north of the Olympic Mountains. / Graduate / 2018-12-01
|
9 |
Delineation of the Nootka fault zone and structure of the shallow subducted southern Explorer plate as revealed by the Seafloor Earthquake Array Japan Canada Cascadia Experiment (SeaJade)Hutchinson, Jesse 25 May 2020 (has links)
At the northern extent of the Cascadia subduction zone, the subducting Explorer and Juan de Fuca plates interact across a translational deformation zone, known as the Nootka fault zone. The Seafloor Earthquake Array Japan-Canada Cascadia Experiment (SeaJade) was designed to study this region. In two parts (SeaJade I and II, deployed from July – September 2010 and January – September 2014), seismic data from the SeaJade project has led to several important discoveries. Hypocenter distributions from SeaJade I and II indicate primary and secondary conjugate faults within the Nootka fault zone. Converted phase analysis and jointly determined seismic tomography with double-difference relocated hypocenters provide evidence to several velocity-contrasting interfaces seaward of the Cascadia subduction front at depths of ~4-6 km, ~6-9 km, ~11-14 km, and ~14-18 km, which have been interpreted as the top of the oceanic crust, upper/lower crust boundary, oceanic Moho, and the base of the highly fractured and seawater/mineral enriched veins within oceanic mantle. During SeaJade II, a MW 6.4 mainshock and subsequent aftershocks, known as the Nootka Sequence, highlighted a previously unidentified fault within the subducted Explorer plate. This fault reflects the geometry of the subducting plate, showing downward bending of the plate toward the northwest. This plate bend can be attributed to negative buoyancy from margin parallel mantle flow induced by intraslab tearing further northwest. Seismic tomography reinforces the conclusions drawn from the Nootka Sequence hypocenter distribution. Earthquakes from the entire SeaJade II catalogue reveal possible rotated paleo-faults, identifying the former extent of the Nootka fault zone from ~3.5 Ma. / Graduate
|
10 |
Glacio-isostatic adjustment modelling of improved relative sea-level observations in southwestern British Columbia, CanadaGowan, Evan James 06 December 2007 (has links)
In the late Pleistocene, most of British Columbia and northern Washington was covered by the Cordilleran ice sheet. The weight of the ice sheet caused up to several hundred metres of depression of the Earth’s crust. This caused relative sea level to be higher in southwestern British Columbia despite lower global eustatic sea level. After deglaciation, postglacial rebound of the crust caused sea level to quickly drop to below present levels. The rate of sea-level fall is used here to determine the rheology of the mantle in southwestern British Columbia.
The first section of this study deals with determination of the postglacial sea-level history in the Victoria area. Constraints on sea-level position come from isolation basin cores collected in 2000 and 2001, as well as from previously published data from the past 45 years. The position of sea-level is well constrained at elevations greater than -4 m, and there are only loose constraints below that. The highstand position in the Victoria area is between 75-80 m. Sea level fell rapidly from the highstand position to below 0 m between 14.3 and 13.2 thousand calendar years before present (cal kyr BP). The magnitude of the lowstand position was between -11 and -40 m. Though there are few constraints on the lowstand position, analysis of the crustal response favours larger lowstand.
Well constrained sea-level histories from Victoria, central Strait of Georgia and northern Strait of Georgia are used to model the rheology of the mantle in southwestern British Columbia. A new ice sheet model for the southwestern Cordillera was developed as older models systematically underpredicted the magnitude of sea level in late glacial times. Radiocarbon dates are compiled to provide constraints on ice sheet advance and retreat. The Cordillera ice sheet reached maximum extent between 17 and 15.4 cal kyr BP. After 15.4 cal kyr, the ice sheet retreated, and by 13.7 cal kyr BP Puget Sound, Juan de Fuca Strait and Strait of Georgia were ice free. By 10.7 cal kyr BP, ice was restricted to mountain glaciers at levels similar to present. With the new ice model, and using an Earth model with a 60 km lithosphere, asthenosphere with variable viscosity and thickness, and transitional and lower mantle viscosity based on the VM2 Earth model, predicted sea level matches the observed sea level constraints in southwestern British Columbia. Nearly identical predicted sea-level curves are found using asthenosphere thicknesses between 140-380 km with viscosity values between 3x10^18 and 4x10^19 Pa s. Predicted sea level is almost completely insensitive to the mantle below the asthenosphere. Modeled present day postglacial uplift rates are less than 0.5 mm yr^-1. Despite the tight fit of the predicted sea level to observed late-glacial sea level observations, the modelling was not able to fit the early Holocene rise of sea level to present levels in the central and northern Strait of Georgia.
|
Page generated in 0.1257 seconds