• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 101
  • 43
  • 16
  • 16
  • 16
  • 16
  • 16
  • 16
  • 16
  • 13
  • 10
  • 7
  • 6
  • 2
  • 2
  • Tagged with
  • 255
  • 70
  • 38
  • 35
  • 34
  • 25
  • 22
  • 21
  • 21
  • 19
  • 19
  • 15
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Untersuchungen zur Proteolyse von para-k-Casein: vom Modell zum Käse

Böhm, Anke 23 May 2003 (has links) (PDF)
Para-k-Casein entsteht durch Hydrolyse des kappa-Caseins nach Zugabe proteolytischer Enzyme zur Milch. Untersuchungen an selbst erstellten Modellen unter Bedingungen, die die Käsereifung simulieren, zeigen, dass die Proteolyse des für die Käsereifung bedeutenden para-k-Caseins stark vom Wassergehalt abhängt. Mit Hilfe geeigneter Methoden (SDS-Elektrophorese, IEF, GPC, RP-HPLC, ESI-MS u.a.) konnte der Abbau des para-k-Caseins durch die industriell relevanten Milchgerinnungsenzyme Chymosin, Fromase und Suparen bei unterschiedlichem Wasserangebot verfolgt werden. Para-k-Casein wird bei einem käseüblichen Wassergehalt von 60 % innerhalb von 15 Wochen über wenig höhermolekulare Spaltprodukte überwiegend zu Peptiden mit Molmassen im Bereich von 400-1400 Da abgebaut. Wie elektrophoretische Untersuchungen zeigen, wird para-k-Casein auch im Sauermilchkäse abgebaut. Allerdings ist die Detektion der in sehr geringer Menge entstandenen Hydrolyseprodukte problematisch. / K-casein is one of the original casein components in milk. Model-experiments under cheese ripening conditions demonstrate the hydrolysis of para-k-Casein, which is the hydrophobic part of kappa-casein, by rennet and rennet substitutes fromase and suparen. Different water contents influences the dimension of hydrolysis of para-k-Casein. A water content of 60 % usual found in cheese results in a great number of hydrolysis products from para-k-Casein with molecular weights between 400-1400 Da. The hydrolyses was investigated for a time period of 15 weeks by several analytical methods (i.e RP-HPLC, ESI-MS, electrophoretic methods, and others). Investigations by electrophoresis of the ripening process of acid curd cheese demonstrated that para-k-Casein is also hydrolysed in this type of cheese, but the detection is quite difficult.
92

Cross-linking with microbial transglutaminase

Raak, Norbert 15 November 2019 (has links)
Microbial transglutaminase (mTGase) is an acyltransferase that predominantly catalyses the formation of covalent cross-links between protein-bound glutamine and lysine residues, referred to as isopeptide bonds. This typically results in protein polymerisation. The enzymatic polymerisation of caseins, the major protein fraction in milk, has been studied for decades because of its potential to modify physical properties of fermented dairy products. It was suggested that cross-linked caseins form denser gel networks, resulting in higher gel stiffness and increased water holding capacity. However, other studies indicated that there is an optimal cross-linking degree and that prolonged incubation with mTGase results in converse effects. The aim of this research was to elucidate the mechanisms that cause these alterations of the gelation properties. Using non-micellar casein preparations at 27 g·kg-1 protein as model systems, structure-function-interrelationships were studied by molecular characterisation in combination with rheological studies of acid-induced gels. The results suggested that casein molecules self-associate in aqueous solutions and that cross-linking occurs predominantly within distinct casein particles. These cross-links contributed directly to the stiffness of acid-induced gels as indicated by an increased maximum storage modulus. However, in the presence of ions, introduced either prior to or after cross-linking, the highest value was shifted to shorter incubation times. This was attributed to an increased inflexibility of the casein particles with ongoing internal cross-linking, which made them incapable of conformational changes to compensate for the screening of attractive electrostatic interactions through other non-covalent interactions. The findings provide important information for the direct application of mTGase in milk as well as on the utilisation of cross-linked caseinates as additives in food processing. Further studies should be conducted at casein concentrations below self-association as well as above close packing of casein particles to include other cross-linking mechanisms. Moreover, potential applications in the non-food sector should be ascertained.
93

Remineralizing with CPP-ACP: effect of protocol in vitro

Vellore Loganathan, Naveen Kumar. January 2006 (has links)
published_or_final_version / Dentistry / Master / Master of Dental Surgery
94

Análise comparativa de genes das caseínas de búfalo /

Naressi, Bruna Cristina Machado. January 2015 (has links)
Orientador: Maria Elisabete Jorge Amaral / Coorientador: Nedenia Bonvinos Stafuzza / Banca: Rodrigo Pelicioni Savegnago / Banca: Paola Jocelan Scarin Provazzi / Resumo: Dentre as proteínas do leite, as caseínas (alfa-s1, alfa-s2, beta- e kapa-caseína) assumem papel de destaque devido ao alto valor nutritivo e às características físico-químicas que favorecem a fabricação de derivados do leite. Essas proteínas são codificadas pelos genes CSN1S1, CSN1S2, CSN2 e CSN3. A fim de realizar análise comparativa dos genes das caseínas de búfalo, o presente trabalho teve como objetivo a identificação, caracterização e sequenciamento de clones da biblioteca genômica de búfalo, visando analisar a estrutura molecular de genes das caseínas. Dentre os 33.792 clones avaliados, foram identificados dois clones positivos para genes das caseínas, um para o gene CSN1S1 (clone A/2) e outro para o gene CSN3 (clone L/8). Na sequência de DNA obtida a partir do clone A/2, foram identificados os genes CSN1S1 inteiro e CSN2 parcial, enquanto que nas sequências de DNA do clone L/8 identificou-se o gene CSN3 partial. O gene CSN1S1 apresentou 17.008 bp organizados em 19 éxons com tamanhos variando de 24 bp a 380 bp e 18 íntrons com tamanhos de 90 bp a 1.710 bp. As análises comparativas revelaram que os éxons e íntrons desse gene apresentaram conservação acima de 85% entre búfalo e boi. As porções do gene CSN2 identificadas incluíram o éxon 9 e parte do íntron 8, os quais mostraram conservação acima de 98% com as sequências correspondentes em boi. Já as sequências parciais do gene CSN3 abrangeram parte dos íntrons 2 e 3 e o íntron 4 completo, além dos éxons 3, 4 e 5. Estas sequências apresentaram conservação acima de 94% com as correspondentes em boi. As análises de identificação de sequências repetitivas mostraram que 43,83% e 44,98% das sequências de DNA do clone A/2 e L/8, respectivamente, são representadas por elementos retrotransposons. Nas análises comparativas, tanto o gene CSN1S1 quanto o gene CSN3 parcial apresentaram sequências repetitivas búfalo específicas. A sequência... / Abstract: Among milk proteins, the caseins (alpha-s1, alpha-s2, beta- and kappa-casein) play a crucial role considering their high nutritional value and physicochemical characteristics which contribute to the manufacture of dairy products. These proteins are encoded by the CSN1S1, CSN1S2, CSN2 and CSN3 genes, respectively. In order to analyze the buffalo casein genes and compare the sequences with other species, the goal of the present study was to identify, characterize and sequence clones from a buffalo genomic library. A total of 33,792 clones were evaluated, and two clones were identified as positive, one for the CSN1S1 gene (clone A/2) and other for the CSN3 gene (clone L/8). The DNA sequence from clone A/2 identified the whole CSN1S1 and a partial sequence from the CSN2 genes. The DNA sequence from clone L/8 revealed a partial sequence from the CSN3 gene. The CSN1S1 gene presented a total of 17,008 bp organized in 19 exons ranging from 24 bp to 380 bp and 18 introns ranging from 90 bp to 1,710 bp. Comparative analysis showed sequence conservation higher than 85% on exons and introns of the CSN1S1 gene when compared with the cattle gene sequence. The partial sequence from the CSN2 gene included exon 9 and part of intron 8, with conservation higher than 98% when compared with the cattle sequence. The partial sequences of the CSN3 gene included parts of the introns 2 and 3, the whole sequence of intron 4 and exons 3, 4 and 5. These sequences showed conservation higher than 94% with cattle. The identification of repetitive sequences showed that 43.83% of DNA sequence from clone A/2 and 44,98% from clone L/8 were represented by retrotransposable elements. Further comparative analysis showed buffalo specific repetitive sequences in the CSN1S1 gene and the partial CSN3 gene with when compared with other bovids species. The coding sequence of the buffalo CSN1S1 gene showed 98%, 93%, and 90% of identity with the correspondent sequences in cattle ... / Mestre
95

Complexo pectina/caseína: aspectos básicos e aplicados / Pectin/casein complex: basic and functional aspects

Camilo, Katyana França Bonini 17 December 2007 (has links)
Os sistemas de liberação de fármacos são parte integrante da investigação farmacêutica. Grande ênfase tem sido dada à utilização de polímeros hidrofílicos naturais como carreadores devido às vantagens inerentes a seu baixo custo, biocompatibilidade e segurança de uso. Os objetivos principais deste trabalho foram a preparação e avaliação de sistemas microparticulados a base de pectina e caseína e o estudo da liberação in vitro do aciclovir contido nas micropartículas. Esses sistemas visam uma liberação prolongada do fármaco aumentando sua biodisponibilidade oral. O efeito de parâmetros como pH, força iônica, viscosidade, proporção e concentração total de polímeros foi avaliado. A melhor condição para ocorrência da coacervação foi determinada por mobilidade eletroforética, rendimento do coacervado e microscopia ótica. A pectina e a caseína podem interagir formando complexos insolúveis. A formação do complexo coacervado foi espontânea e ocorreu em condições brandas no intervalo de pH em que os polímeros encontram-se carregados com cargas opostas. As dispersões foram secas em Spray dryer, resultando em partículas bastante pequenas (6µm) e homogêneas. Através da microscopia ótica foi possível observar que o fármaco se encontrava no interior das micropartículas. O pH (4,0-5,0) do meio influenciou decididamente a formação dos complexos coacervados, e a melhor relação mássica para o par pectina/caseína foi 1:1. Proporções superiores ou inferiores reduziram significativamente a extensão da coacervação. O aumento no teor de sólidos totais (4-8% p/v) bem como a adição de sal (0-120 mMol) não suprimiu a formação ou a estabilidade do sistema. Foram preparadas matrizes hidrofílicas contendo as micropartículas encapsuladas com aciclovir. O estudo de dissolução in vitro demonstrou que a liberação do aciclovir foi mais lenta nos sistemas matriciais e microparticulados do que a do fármaco livre. Entretanto, as matrizes apresentaram perfis de liberação sustentada mais adequados do que os sistemas microparticulados. / Drug delivery systems became an integral part of pharmaceutical research. The use of natural hydrophilic polymers as drug carriers has received considerable attention in the last few years, especially from the viewpoint of cost, environmental concerns and safety. The main purpose of this study was to report and discuss the preparation of a microparticulate system by mixing the negatively charged pectin and the amphoteric casein and also the in vitro evaluation of polymeric microparticulate systems loaded with acyclovir. Such drug delivery system was conceived to prolong the therapeutic activity of acyclovir and increase its oral biovailability.The influence of pH, total biopolymers concentration, viscosity of dispersions, pectin/casein ratio and ionic strength were reported. Zeta potential measurements and dry coacervate yield were used to determine the optimal conditions for complex coacervation and were supplemented by optical microscopy. Pectin/casein in aqueous mixture may interact and form insoluble complexes. The complex formation was spontaneous and occurs under mild conditions. The phenomenon of complex coacervation mainly occurs at a pH range when both polyelectrolytes carry opposite charges. Microparticulate preparations were spray dried and results showed that the microparticles obtained were always quite small, the diameters of 80% of the particles did not exceed 6m, and physicochemical characterization showed that the drug was homogeneously dispersed inside the microparticles. Pectin/casein ratio and pH range were found to mainly affect the microparticles formation and encapsulation efficiency. The complex coacervation was dependent on pH (4,0-5,0) and the optimum pectin/casein ratio was 1:1. Superior or inferior proportion significantly decreased the coacervate yield. Increasing in total biopolymer concentration (4-8% w/v) and salt addition (0-120 mMol) did not inhibit the formation and stability of pectin/casein systems. Hydrophilic matrices containing acyclovir loaded microparticles were also prepared. The in vitro dissolution profile of acyclovir from the microparticulate systems and matrices were slower than that for the free drug. However, the sustained release characteristic was more prominent in matrices than in microparticles formulations
96

Misturas aquosas de pectina/caseína: estudo físico-químico e potencial de uso no tratamento da doença periodontal / Pectin/casein aqueous mixtures: physical-chemical studies and potential use in periodontal disease treatment.

Rediguieri, Camila Fracalossi 25 April 2008 (has links)
Misturas aquosas de polissacarídeos e proteínas são normalmente instáveis e separam-se em fases devido às interações repulsivas ou atrativas existentes entre os polímeros. O efeito da temperatura, do pH e da concentração polimérica no comportamento de misturas de pectina/caseína foi estudado nesse trabalho. Um diagrama de fases construído em pH 7 revelou que a mistura é estável apenas em baixas concentrações. Concentrações mais elevadas levam à incompatibilidade termodinâmica, governada por forças puramente entrópicas, e ao aparecimento de duas fases: uma rica em caseína (inferior) e outra rica em pectina (superior). A decomposição espinodal pôde ser visualizada nos estágios iniciais da separação de fases e, nos estágios intermediários, observou-se a formação de emulsões água/água. Quando o pH dessas emulsões é reduzido para abaixo de 6, a pectina é atraída para a fase de caseína, resultando na formação de partículas de complexo pectina/caseína que não coalescem e são resistentes à adição de sal (NaCl 100 mM), apresentando um diâmetro médio aproximado de 4 m. As micropartículas de pectina/caseína produzidas por este método demonstraram ser capazes de encapsular com alta eficiência tanto substâncias hidrofóbicas quanto hidrofílicas, possibilitando sua aplicação na encapsulação de compostos variados para fins diversos. Neste trabalho, as micropartículas foram utilizadas para encapsular cristais de metronidazol e sua utilização na obtenção de filmes de aplicação intra-bolsa periodontal foi avaliada in vitro. As dispersões de pectina/caseína contendo as micropartículas carregadas foram submetidas à secagem para a obtenção dos filmes. Estes, reticulados ou não com cálcio, sustentaram a liberação in vitro do fármaco por pelo menos 7 dias in vitro. A reticulação foi importante para reduzir a desintegração dos filmes, contribuindo para aumentar o tempo de permanência deles no local de aplicação e para melhorar suas propriedades mecânicas, facilitando seu manuseio e inserção na bolsa periodontal. Com esses resultados, conclui-se que os filmes de micropartículas de complexo pectina/caseína contendo metronidazol desenvolvidos neste trabalho são excelentes candidatos a sistemas de liberação local para o tratamento da doença periodontal. / Aqueous mixtures of polysaccharides and proteins are usually unstable and phase-separate either because of repulsive or attractive interactions. The effect of temperature, pH, and biopolymer concentration on the phase behavior of pectin/casein mixtures was investigated. A phase diagram built at pH 7 revealed that the mixture is stable at low polymer concentrations. Higher concentrations lead to thermodynamic incompatibility, driven purely by entropic forces, and to the appearance of two phases: one enriched with casein (lower) and the other, with pectin (upper). Spinodal decomposition was visualized in the early stages of phase separation. In the intermediate stages, water-in-water emulsions were observed. When the pH of these emulsions was lowered below 6, pectin was attracted by casein-rich phase, resulting in the formation of particles (diameter ~ 4 m) of pectin/casein complex, which do not coalesce and are insensitive to salt addition (100 mM NaCl). Pectin/casein microparticles obtained by this method were able to encapsulate with high efficiency either hydrophobic or hydrophilic substances and, due to that, could be applied in the encapsulation of a great variety of compounds for different purposes. In this work, the pectin/casein microparticles were used to encapsulate metronidazole crystals and the preparation of intra-periodontal pocket films with them was evaluated. Therefore, dispersions of loaded pectin/casein microparticles were dried in an oven. Films cross-linked or not with calcium sustained the in vitro drug release at least for 7 days. The cross-linking with calcium was important to reduce film disintegration, accounting for its permanence in the applied region, and to improve the mechanical properties, which facilitates manipulation and insertion into the periodontal pocket. With these results we conclude that the films formed by microparticles of pectin/casein complex loaded with metronidazole are excellent candidates for local drug delivery systems for the treatment of periodontal disease.
97

Casein Supramolecules: Structure and Coagulation Properties

Oommen, Bonney S. 01 May 2004 (has links)
The changes in quaternary structure of casein supramolecules with various physical and chemical treatments were studied using transmission electron microscopy, and a model to account for the changes is put forth. The effects of casein structure on coagulation properties were also studied. The sample preparation for transmission electron microscopy involved physical methods of fixation and flash freeing to preserve the structure of caseins in the sample. The structure of caseins in sodium and calcium caseinate varied with sodium caseinate not exhibiting any spherical structure as opposed to the spherical structure seen in calcium caseinate, non-fat dried milk and native milk. This difference in structure was carried over to rennet coagulum made from those sources of casein. Addition of calcium and phosphate to sodium and calcium caseinate, respectively, improved their coagulation properties. Hydration parameters such as time and shear of hydration affected the extent of hydration. High shear (733 s-1) or approximately 10 hr of hydration was required to disperse and hydrate the dried milk protein powders. Acidification and treatment with excess EDT A resulted in dissociation of casein supramolecules into various sizes and shapes. Heat treatment of milk in the presence of ethanol also resulted in its dissociation. High heat treatment of milk at various pH levels induced different types of whey protein casein interactions. All these changes can be explained using an irregular supramolecular structure of caseins based on a node and strand network of proteins and calcium phosphate nanoclusters. Such a filigreed sponge-like appearance is seen in native bovine milk and in milk of other species.
98

Investigation of Solubilization, Cold Gelation, and Rennet Coagulation Properties of Highly Concentrated Micellar Casein Concentrate for Use in Cheese Making

Lu, Ying 01 May 2016 (has links)
Highly concentrated micellar casein concentrate (HC-MCC), a potential ingredient for cheese making, containing ~20% casein with ~70% of serum proteins removed by microfiltration, and diafiltration of skim milk, and then further concentrated by vacuum evaporation. The objectives of this research were to investigate solubilization, cold gelation, rennet coagulation properties of recombined HC-MCC and cream for its use in cheese making. In Chapter 3, either mixing thawed HC-MCC in water at high temperature (~50C) or addition of trisodium citrate can achieve complete dispersion and more than 80% solubility of HC-MCC in water (3% protein). Overnight storage helps to fully disperse HC-MCC, but only reaches ~30% of solubility at 20C. Cold-gelation of HCMCC is thermally reversible and reducing protein levels in HC-MCC can decrease its CGT. The HC-MCC with less than 16% of protein does not gel at 5C. We propose that cold-gelation of HC-MCC occurs when the kinetic energy of the casein micelles is sufficiently reduced to inhibit their mobility in relation to adjacent casein micelles. In Chapter 4, the recombined concentrated milk (RCM) by mixing thawed frozen HC-MCC and cream with 12% casein at pH 6.6 does not gel until cooled below 12°C. Addition of either sodium citrate or high levels of calcium increased CGT, although low levels of calcium did not impact CGT. Cold gelation of RCM was thermally reversible, even when citrate was added to partially chelate calcium. We propose that cold gelation of RCM occurs when protein strands that have been partially released from the casein micelles entangle, restrict their mobility and form a fine stranded gel network. The RCM at a casein level of 12% (wt/wt) has potential for use in cheese making. In Chapter 5, reducing rennet level can increase coagulation time of RCM (11% casein) without impact on curd firmness or firming rate. Decreased coagulation temperature helps to increase coagulation time and decrease curd firmness rate, but also increases the initial viscosity of RCM. Pre-acidified RCM has no advantage in increasing coagulation time, decreasing curd firmness or firming rate. Microstructure of RCM and its coagulum indicates that the increased curd firmness probably results from the highly inter-linked and longer protein strands in RCM curd. Reducing rennet level can be applied to slow down rennet coagulation of RCM (11% casein) in cheese making.
99

Microstructural Changes in Casein Micelles during Acidification of Skim Milk

Du, Hongwen 01 May 1994 (has links)
Pasteurized skim milk was acidified using glucono-δ-lactone (GDL) at 10, 20, 30, and 40°C or with 1.2% freeze-dried yogurt starter culture at 40°C. Milk coagulation was followed by measuring turbidity, curd firmness, particle size, and casein micelle microstructural changes using transmission electron microscopy . The pH of milk was gradually lowered during acidification with GDL or starter culture. Acidification rate showed greater influence on turbidity change at 10°C than at 20, 30, or 40°C. Average casein micelle size increased with decreasing temperature. The patterns of average micelle size versus pH were not affected by temperature. No great variation of average micelle size was observed above pH 5.2. Below pH 5.0 the size increased exponentially as the milk gelled. Acidification rate did not influence average micelle size at 10°C. Acidification rate, types of acidifying agents, and temperature had no effect on the Formagraph gelation pH and the rate at which curd firmness developed. Casein micelles became less compact and less distinct with decreasing temperature before acidification. As pH was lowered, protein was dissociated from and then reassociated with casein micelles. Acidification rate had no effect on microstructure change of casein micelles at 10°C.
100

DNA methylation of two milk protein genes in lactating and non-lactating bovine mammary gland tissues

Wang, Xiaoliang, 1980- January 2008 (has links)
It is well known that DNA methylation in gene promoter regions inhibits gene transcription and that tissue-specific gene expression is partially under the control of this transcription regulatory mechanism. In this study, bovine mammary gland tissues were collected from individual animals in lactating and non-lactating stages to investigate the DNA methylation patterns in the kappa-casein gene and alpha-lactalbumin gene core promoter regions using the bisulphite treatment in combination with polymerase chain reaction (PCR) sequencing. Different methylation status of each sample was classified into three categories, namely methylation at known transcription factor binding domains, methylation at core promoter non-binding domains and the absence of cytosine methylation. Real-time quantitative PCR was used to quantify the transcription levels of the kappa-casein and alpha-lactalbumin genes from the collected samples. A comparative method was used and fold-change values were calculated based on the comparison of the normalized threshold values of samples from different physiological stages as well as on various methylation patterns observed in their core promoter regions. Statistical analyses showed that the expressions of the kappa-casein and alpha-lactalbumin genes were significantly different in lactating and non-lactating mammary gland tissues. The methylation observed in the core promoter region of bovine alpha-lactalbumin gene was found to be associated with its gene expression. On the other hand, the methylation found in the core promoter region of bovine kappa-casein gene did not have any effect on its gene transcript levels.

Page generated in 0.1321 seconds