Spelling suggestions: "subject:"casimir effect"" "subject:"kasimir effect""
11 |
De-wetting of cobalt thin films on sapphireEspinosa, Jorge D. January 2007 (has links)
Thesis (Ph. D.)--West Virginia University, 2007. / Title from document title page. Document formatted into pages; contains ix, 106 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 102-105).
|
12 |
The Worldline Method for Electromagnetic Casimir EnergiesMackrory, Jonathan 06 September 2017 (has links)
The Casimir effect refers to the primarily attractive force between material bodies due to quantum fluctuations in the electromagnetic field. The Casimir effect is difficult to calculate in general, since it is sensitive to the exact shapes of the bodies and involves contributions from all frequencies. As a result, calculating the Casimir effect between general bodies usually requires a numerical approach. The worldline method computes Casimir energies by creating an ensemble of space-time paths corresponding to a virtual particle interacting with the bodies. This method was originally developed for a scalar fields coupled to an idealized background potential, rather than the vector electromagnetic field interacting with media.
This thesis presents work on extending the worldline method to account for the material properties of the interacting bodies, and the polarizations of electromagnetism. This thesis starts by covering background material on path integrals, and quantizing the electromagnetic field in media. The electromagnetic field is decomposed in terms of two scalar fields for planar bodies, where these scalar fields correspond to the transverse-electric and transverse-magnetic polarizations of the electromagnetic field. The worldline path integrals are developed for both polarizations, and solved analytically. Next, numerical methods are developed and tested in the context of planar bodies. The starting positions, and scale of the paths, and shape of the paths are sampled via Monte Carlo methods. The transverse-magnetic path integral also requires specialized methods for estimating derivatives, and path construction. The analytical and numerical results for both worldline path integrals are in agreement with known solutions. Finally, specialized methods are developed for computing derivatives of the worldline Casimir-energy path integrals,
allowing for efficient numerical computations of Casimir forces and torques.
|
13 |
A new regularization procedure for calculating the Casimir energyGhadirian, Bahman. January 2008 (has links)
Thesis (Ph.D.)--University of Western Sydney, 2008. / A thesis submitted to the University of Western Sydney, College of Health and Science, School of Biomedical and Health Sciences in fulfilment of the requirements for the degree of Doctor of Philosophy. Includes bibliographical references.
|
14 |
Investigation into compactifed dimensions Casimir energies and phenomenological aspects /Obousy, Richard K. Cleaver, Gerald B. January 2008 (has links)
Thesis (Ph.D)--Baylor University, 2008. / Includes bibliographical references (p. 120-133)
|
15 |
Fluxos e densidades de energia negativa em teoria quântica de camposMaia, Clóvis Achy Soares [UNESP] 03 1900 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:25:30Z (GMT). No. of bitstreams: 0
Previous issue date: 2005-03Bitstream added on 2014-06-13T20:33:11Z : No. of bitstreams: 1
maia_cas_me_ift.pdf: 968895 bytes, checksum: 0a94d217b227cfdce0aee0d507acf35f (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Sabe-se já há algum tempo que a Teoria Quântica de Campos permite violações das Condições Clássicas de Energia na forma de densidades e fluxos de energia negativa. Um exemplo contundente é o efeito Casimir, onde o estado de vácuo do campo eletromagnético entre duas placas metálicas possui densidade de energia negativa. Porém, se as leis da física não colocassem restrições sobre tais violações das Condições de Energia, aparentemente seria possível usar energias negativas para, por exemplo, produzir violações macroscópicas da segunda lei da termodinâmica, da conjectura de cosmic censorship, além de se proporcionar a criação de wormholes e possíveis máquinas do tempo. Uma linha de pesquisa desenvolvida para abordar essa questão envolve as chamadas Desigualdades Quânticas, estudadas primeiramente por L.H. Ford, que são desigualdades sobre fluxos e densidades de energia negativa que impõem restrições capazes de tornar as violações acima não observáveis macroscopicamente. Nesta dissertação apresentaremos alguns exemplos de sistemas que possuem densidades ou fluxos de energia negativa, revisaremos os teoremas de Desigualdades Quânticas e discutiremos algumas de suas aplicações. Discutiremos também algumas limitações destes teoremas apresentando sistemas que não estão sujeitos a desigualdades quânticas, dos quais um exemplo é o próprio efeito Casimir. Iremos enfim propor um modelo que introduz flutuações quânticas nas condições de contorno (e.g., nas placas metálicas) do efeito Casimir, e iremos mostrar que a introdução destes efeitos de flutuação no cálculo da energia de Casimir tem por resultado impedir que violações de leis físicas macroscópicas manifeste-se nesse sistema. / Abstracts: It has been known for some time that Quantum Field Theory allows the violation of Classical Energy Conditions in the form of negative energy densities and fluxes. A remarkable exemple is the Casimir effect, where the vacuum state of the electromagnetic field between two perfectly conducting parallel plates presents negative energy density. However, if he laws of physics did not place constraints on such a violation of the Energy Conditions, it appears that it would be possible to use negative energies for producing, for example, macroscopic violation of the second law of thermodynamics, of the cosmic censorship conjecture, and also provide the creation of woemholes and time machines. A line of research wich was developed to approach this question is the so called Quantum Inequalities, first studied by L.H. Ford, which are constraints over negative energy densities and fluxes with capacity to render the above violations macroscopically unobservable. We present here some examples of systems with negative energy densities or fluxes, review the Quantum Inequalities theorems and discuss some of its applications. We also discuss some limitations of these theorems showing systems where there are no quantum inequalities, being the Casimir effect one example. At last we propose a model which introduces quantum fluctuations in the description of the boundaries conditions (e.g., the conducting plates) of Casimir effect and we'll show that the introduction of these fluctuations in the calculation of Casimir energy results in the impossibility of violation of macroscopic physical laws using Casimir configuration.
|
16 |
Fluxos e densidades de energia negativa em teoria quântica de campos /Maia, Clóvis Achy Soares. January 2005 (has links)
Orientador: George E. A. Matsas / Banca: Élcio Abdalla / Banca: Vitório Alberto De Lorenci / Resumo: Sabe-se já há algum tempo que a Teoria Quântica de Campos permite violações das Condições Clássicas de Energia na forma de densidades e fluxos de energia negativa. Um exemplo contundente é o efeito Casimir, onde o estado de vácuo do campo eletromagnético entre duas placas metálicas possui densidade de energia negativa. Porém, se as leis da física não colocassem restrições sobre tais violações das Condições de Energia, aparentemente seria possível usar energias negativas para, por exemplo, produzir violações macroscópicas da segunda lei da termodinâmica, da conjectura de cosmic censorship, além de se proporcionar a criação de wormholes e possíveis máquinas do tempo. Uma linha de pesquisa desenvolvida para abordar essa questão envolve as chamadas Desigualdades Quânticas, estudadas primeiramente por L.H. Ford, que são desigualdades sobre fluxos e densidades de energia negativa que impõem restrições capazes de tornar as violações acima não observáveis macroscopicamente. Nesta dissertação apresentaremos alguns exemplos de sistemas que possuem densidades ou fluxos de energia negativa, revisaremos os teoremas de Desigualdades Quânticas e discutiremos algumas de suas aplicações. Discutiremos também algumas limitações destes teoremas apresentando sistemas que não estão sujeitos a desigualdades quânticas, dos quais um exemplo é o próprio efeito Casimir. Iremos enfim propor um modelo que introduz flutuações quânticas nas condições de contorno (e.g., nas placas metálicas) do efeito Casimir, e iremos mostrar que a introdução destes efeitos de flutuação no cálculo da energia de Casimir tem por resultado impedir que violações de leis físicas macroscópicas manifeste-se nesse sistema. / Abstracts: It has been known for some time that Quantum Field Theory allows the violation of Classical Energy Conditions in the form of negative energy densities and fluxes. A remarkable exemple is the Casimir effect, where the vacuum state of the electromagnetic field between two perfectly conducting parallel plates presents negative energy density. However, if he laws of physics did not place constraints on such a violation of the Energy Conditions, it appears that it would be possible to use negative energies for producing, for example, macroscopic violation of the second law of thermodynamics, of the cosmic censorship conjecture, and also provide the creation of woemholes and time machines. A line of research wich was developed to approach this question is the so called Quantum Inequalities, first studied by L.H. Ford, which are constraints over negative energy densities and fluxes with capacity to render the above violations macroscopically unobservable. We present here some examples of systems with negative energy densities or fluxes, review the Quantum Inequalities theorems and discuss some of its applications. We also discuss some limitations of these theorems showing systems where there are no quantum inequalities, being the Casimir effect one example. At last we propose a model which introduces quantum fluctuations in the description of the boundaries conditions (e.g., the conducting plates) of Casimir effect and we'll show that the introduction of these fluctuations in the calculation of Casimir energy results in the impossibility of violation of macroscopic physical laws using Casimir configuration. / Mestre
|
17 |
Vacuum Energy for a Scalar Field with Self-Interaction in (1 + 1) DimensionsBordag, Michael 08 May 2023 (has links)
We calculate the vacuum (Casimir) energy for a scalar field with ϕ4 self-interaction in (1 + 1) dimensions non perturbatively, i.e., in all orders of the self-interaction. We consider massive and massless fields in a finite box with Dirichlet boundary conditions and on the whole axis as well. For strong coupling, the vacuum energy is negative indicating some instability.
|
18 |
Dispersion Forces Between Fields Confined to Half SpacesBordag, M., Pirozhenko, I. G. 06 April 2023 (has links)
We consider the Casimir effect for a scalar field interacting with another scalar field that is
confined to two half spaces. This model is aimed to mimic the interaction of the photon field with
matter in two slabs. We use Dirichlet boundary conditions on the interfaces for the fields in the half
spaces and calculate their one-loop contribution to the wave equation for the other field. We perform
the ultraviolet renormalization and develop a convenient formalism for the calculation of the vacuum
energy in this configuration.
|
19 |
Casimir LocalizationJacobs, David M. 11 June 2014 (has links)
No description available.
|
20 |
Hybrid Optomechanics and the Dynamical Casimir EffectMcCutcheon, Robert A. 01 August 2017 (has links)
No description available.
|
Page generated in 0.0432 seconds