• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation initiale de l'instabilité génétique des spermatides de mammifères

Leduc, Frédéric January 2012 (has links)
La spermatogenèse est un processus complexe permettant la génération de gamètes mâles ultra spécialisés, les spermatozoïdes. Plusieurs réorganisations successives de l'ADN sont essentielles pour la génération de gamètes mâles haploïdes, dont l'enjambement durant la méiose. La dernière étape de la spermatogenèse, la spermiogenèse, comporte une importante réorganisation nucléaire accompagnée de nombreuses cassures bicaténaires d'ADN, ce qui pourrait mener à une instabilité génétique, surtout dans ce contexte haploïde vulnérable. Le premier objectif de mes recherches était de mieux caractériser cette étape de remodelage chromatinien. Par une approche d'immunofluorescence, nous avons démontré la présence de l'enzyme topoisomérase IIß (TOP2B) lors du remodelage de la chromatine, ainsi qu'une réponse aux dommages à l'ADN coïncidant avec le remodelage chromatinien par l'apparition de la phosphorylation du variant d'histone H2AFX, une biomarqueur de cassures bicaténaires. II est donc fort probable que les spermatides utilisent un système de réparation propice à l'erreur, tel que la jonction terminale non-homologue (NHEJ) pour réparer les nombreuses cassures observées à ces étapes, menant possiblement à une instabilité génomique importante. Afin de mieux comprendre l'impact d'une réparation inadéquate ou d'une absence de réparation de ces cassures, nous avons voulu déterminer leur distribution sur le génome murin. Or, il n'existait aucune approche méthodologique permettant de cartographier ces cassures à l'échelle génomique. Utilisant plusieurs modèles in vitro et in vivo, nous avons mis au point une approche unique, appelée damaged DNA immunoprecipitation ou dDIP, pouvant enrichir les régions endommagée sans compromettre la résolution nucléotidique. Par la suite, nous avons mis au point une méthodologie de dDIP pour les cellules d'eucaryotes supérieurs en immobilisant les cellules dans une matrice d'agarose pour limiter l'introduction de dommages non-spécifiques. Le remodelage de la chromatine des spermatides représente une étape d'instabilité génomique encore peu explorée et pourrait s'avérer une source insoupçonnée de diversité génétique. Grâce à la création de la nouvelle méthodologie dDIP, il sera maintenant possible d'explorer l'importance des cassures transitoires observées durant ce drastique changement nucléaire pour les générations futures. De plus, cet outil peut être appliqué à différents types de dommages, tels que les dommages causés par le rayonnement ultraviolet et les dommages oxydatifs, et donc être utilisé dans l'étude de l'instabilité génomique et de la réparation de l'ADN dans de nombreux domaines scientifiques comme le cancer, la sénescence et la toxicologie.

Page generated in 0.0372 seconds