Spelling suggestions: "subject:"spermiogenèse"" "subject:"espermiogenèse""
1 |
Acétylation des histones et fragilité génétique dans le gamète mâle haploïdeBikond Nkoma, Geneviève January 2009 (has links)
Lors de la phase haploïde de la spermatogenèse (spermiogenèse) des mammifères, un important remodelage de la chromatine est nécessaire à la compaction de l'ADN. Au cours de ce remodelage, les histones sont remplacées successivement par les protéines de transition, puis finalement par les protamines. Ce processus implique une succession encore peu connue de modifications post-traductionnelles des histones telles que l'acétylation et la méthylation.Lors de récents travaux, notre laboratoire a montré des évidences suggérant que l'hyperacétylation de l'histone H4 (H4h) semble impliquée dans ce remaniement de la chromatine et fournirait un contexte favorable à l'apparition de cassures de l'ADN. Puisque le contexte chromatinien d'une spermatide diffère de celui d'une cellule somatique, la mise au point de techniques pouvant établir la distribution de H4h dans cette cellule germinale haploïde serait un atout précieux pour établir l'association de cette modification post-traductionnelle à la formation des cassures. Ce mémoire présente ainsi une démarche bipartite visant la mise au point d'approches microscopiques de même que le développement d'une approche d'immunoprécipitation de la chromatine pouvant s'appliquer à la chromatine particulière des spermatides. Grâce à la mise au point de la technique d'immunoprécipitation de la chromatine combinée à l'utilisation de biopuces d'ADN (ChIP-on-chip), nous tentons d'établir la cartographie de H4Ac sur une portion du chromosome X utilisé en guise de sentinelle. Avec la cartographie simultanée de [gamma]-H2AX (H2AFX) en tant que marqueur des cassures bicaténaires de l'ADN, nous tentons de vérifier, au niveau moléculaire, l'hypothèse d'une relation entre l'hyperacétylation des histones et l'apparition des cassures dans les spermatides allongeantes. La compréhension de la formation des cassures est importante puisque la réparation de l'ADN, dans cette cellule haploïde, ne peut compter sur la recombinaison homologue; l'instabilité génétique associée à ce phénomène pourrait fournir l'étiologie d'anomalies génétiques idiopathiques associées au développement de l'embryon. A l'aide d'anticorps couplés à des billes d'or, la microscopie électronique nous permet d'obtenir les premiers résultats d'une double détection de l'histone H4 hyperacétylée et des cassures de l'ADN au sein des noyaux des cellules germinales de la spermatogenèse. Les travaux d'immunoprécipitation de la chromatine dévoilent une répartition hétérogène de l'hyperacétylation de l'histone H4 au niveau du chromosome X, suggérant que l'hyperacétylation du génome lors de la spermiogenèse est progressive. Nous démontrons aussi qu'il existe une interaction entre cette chromatine et le variant d'histone [gamma]-H2AX. Les différences entre les patrons de distribution des deux histones ne permettent pas d'établir si l'hyperacétylation de la chromatine serait à l'origine du dépôt de [gamma]-H2AX, par le biais des cassures double brin.
|
2 |
Identification de l'activité histone acétyltransférase responsable de l'hyperacétylation de l'histone H4 durant la spermiogenèse / Identification of histone acetyltransferase activity responsible for hyperacetylation of histone H4 during spermiogenesisLeroux, Jessica January 2013 (has links)
La stabilité de l’information génétique est d’une importance cruciale pour la fonction normale et la reproduction de tous les êtres vivants. Or, la capacité de fertilisation chez l’homme est habituellement mesurée en considérant la concentration, la motilité et la morphologie des spermatozoïdes. Cependant, ces paramètres ne prennent pas en considération l’intégrité du matériel génétique. Pourtant, de fortes évidences démontrent que la spermiogenèse, qui est la phase haploïde de la spermatogenèse durant laquelle se produit un important remodelage de la chromatine, serait une importante source d’instabilité génétique. En effet, des bris transitoires de l’ADN surviennent durant la spermiogenèse au même moment que l’hyperacétylation des histones H4 et la stimulation de l’hyperacétylation de H4 par traitement à la trichostatine A stimule la formation de cassures dans l’ADN. Ainsi, des histones acétyltransférases (HATs) pourraient affecter la compaction et l’intégrité de l’ADN et par conséquent le potentiel fertilisant du gamète mâle. Il est donc important d’identifier l’histone acétyltransférase impliquée dans l’hyper acétylation des histones H4 durant la spermiogenèse, puisqu’il s’agit d’un processus possiblement important pour la fertilité de l’homme. À la suite d'analyses par spectrométrie de masse d’échantillons protéiques de testicules de souris possédant la propriété d'acétyler l’histone H4 aucune HAT n’a été identifée. Par contre, la protéine mitochondriale ACAT1, qui catalyse la transformation réversible de deux acétyl-CoA en CoA et acétoacétyl-CoA, a été détectée. Ces observations permettent d’émettre l’hypothèse que cette protéine pourrait jouer un rôle dans la spermiogenèse en augmentant le niveau d’acétyl-CoA chez les spermatides en élongation. En effet, puisque selon mes résultats les histones H4 sont en mesure de s’auto-hyperacétyler, on peut supposer qu’une augmentation du niveau d’acétyl-CoA causerait une acétylation de ces histones à l’échelle du génome, permettant ainsi la poursuite de la spermiogenèse et éventuellement la formation de spermatozoïdes matures et fonctionnels.
|
3 |
Caractérisation initiale de l'instabilité génétique des spermatides de mammifèresLeduc, Frédéric January 2012 (has links)
La spermatogenèse est un processus complexe permettant la génération de gamètes mâles ultra spécialisés, les spermatozoïdes. Plusieurs réorganisations successives de l'ADN sont essentielles pour la génération de gamètes mâles haploïdes, dont l'enjambement durant la méiose. La dernière étape de la spermatogenèse, la spermiogenèse, comporte une importante réorganisation nucléaire accompagnée de nombreuses cassures bicaténaires d'ADN, ce qui pourrait mener à une instabilité génétique, surtout dans ce contexte haploïde vulnérable. Le premier objectif de mes recherches était de mieux caractériser cette étape de remodelage chromatinien. Par une approche d'immunofluorescence, nous avons démontré la présence de l'enzyme topoisomérase IIß (TOP2B) lors du remodelage de la chromatine, ainsi qu'une réponse aux dommages à l'ADN coïncidant avec le remodelage chromatinien par l'apparition de la phosphorylation du variant d'histone H2AFX, une biomarqueur de cassures bicaténaires. II est donc fort probable que les spermatides utilisent un système de réparation propice à l'erreur, tel que la jonction terminale non-homologue (NHEJ) pour réparer les nombreuses cassures observées à ces étapes, menant possiblement à une instabilité génomique importante. Afin de mieux comprendre l'impact d'une réparation inadéquate ou d'une absence de réparation de ces cassures, nous avons voulu déterminer leur distribution sur le génome murin. Or, il n'existait aucune approche méthodologique permettant de cartographier ces cassures à l'échelle génomique. Utilisant plusieurs modèles in vitro et in vivo, nous avons mis au point une approche unique, appelée damaged DNA immunoprecipitation ou dDIP, pouvant enrichir les régions endommagée sans compromettre la résolution nucléotidique. Par la suite, nous avons mis au point une méthodologie de dDIP pour les cellules d'eucaryotes supérieurs en immobilisant les cellules dans une matrice d'agarose pour limiter l'introduction de dommages non-spécifiques. Le remodelage de la chromatine des spermatides représente une étape d'instabilité génomique encore peu explorée et pourrait s'avérer une source insoupçonnée de diversité génétique. Grâce à la création de la nouvelle méthodologie dDIP, il sera maintenant possible d'explorer l'importance des cassures transitoires observées durant ce drastique changement nucléaire pour les générations futures. De plus, cet outil peut être appliqué à différents types de dommages, tels que les dommages causés par le rayonnement ultraviolet et les dommages oxydatifs, et donc être utilisé dans l'étude de l'instabilité génomique et de la réparation de l'ADN dans de nombreux domaines scientifiques comme le cancer, la sénescence et la toxicologie.
|
4 |
Caractérisation fonctionnelle des protéines de transition de la spermiogenèseLévesque, Dominique January 1998 (has links)
Durant la phase haploïde de la spermatogénèse (spermiogenèse), les nucléohistones sont remplacées par des protéines hautement basiques, les protamines. Chez les mammifères, ce processus de transition est engendré par l'apparition de protéines nucléaires abondantes dites"de transition" (TP). Les protéines de transition assureraient conséquemment une condensation importante du génome haploïde, entraînant un remodelage majeur de la chromatine de type somatique et une inactivation des enzymes impliqués dans le métabolisme de l'ADN. L'intégrité du processus de restructuration de la chromatine est maintenant considérée comme un déterminant essentiel de la fertilité chez l'homme. TP1, une des protéines de transition majeure de la spermiogenèse, est une protéine de 6 KDa riche en résidus basiques et possédant une activité déstabilisatrice de l'ADN. La protéine de transition majeure TP2, quant à elle, est une protéine basique de 13 KDa comprenant deux structures en"doigts à zinc" situées dans sa partie N-terminale. Au contraire de TP1, TP2 est caractérisée par son potentiel stabilisateur de l'ADN. Notre objectif initial était de déterminer les propriétés structurales de liaison à l'ADN des protéines TP1 et TP2."--Résumé abrégé par UMI.
|
5 |
Spermiogenèse et infertilité masculine : étude des transcrits du gène UBA1, codant pour l'enzyme activatrice de l'ubiquitine et évaluation génétique de deux variants dans le gène PRM1 codant pour la protamine1 / Spermiogenesis and male infertility : study of transcripts from UBA1, the gene coding the ubiquitin activating enzyme, and genetic evaluation of two variants in PRM1, the gene coding protamine1Kichine, Elsa 15 July 2010 (has links)
Les gènes du chromosomeX sont majoritairement inactivés au cours de la méiose mâle. Chez la souris, seulement 6% d’entre eux sont réactivés au cours des stades post-méiotiques. Parmi eux le gène Uba1X codant pour l’enzyme activatrice de l'ubiquitine, UBA1 qui produit trois transcrits dont deux sont ubiquitaires mais le troisième prédomine dans les cellules post¬-méiotiques : les spermatides. Nos travaux montrent que les 5’UTR, seul différence entre ces trois transcrits, déterminent la localisation et la dose relative des isoformes nucléaire et cytoplasmique de la protéine UBA1. Nous avons mis en évidence chez la souris que le transcrit spermatide-spécifique code pour l'isoforme nucléaire, exprimée fortement dans les spermatides suggérant un rôle de la protéine UBA1 dans la dégradation des histones lors du remodelage chromatinien. Nous avons détecté deux mutations dans la région spermatide-spécifique du gène : une délétion de 13pb et une transition G>A, chacune portée par un patient infertile, et non retrouvée dans notre population témoin. Les analyses ont montré que la délétion de 13pb induit un épissage anormal du transcrit spermatide-spécifique et que la transition G>A pouvait réduire le taux d’expression du transcrit spermatide-spécifique. Ces mutations pourraient induire l'infertilité des deux patients. En parallèle nous avons pu démontrer que les mutations dans le gène codant pour la protamine PRM1 décrites dans la littérature c.102G>T et c.-107G>C ne sont pas liées à l'infertilité masculine et que le variant est un polymorphisme fréquemment retrouvé dans la population congolaise. / The majority of genes on the X chromosome are repressed during meiosis and only 6% of them are expressed in post meiotic germ cells. One of these genes is Ubal, encoding the ubiquitin-activating enzyme UBA1. Ubal produces three different transcripts, two of which are ubiquitously expressed while the third is predominant in the post meiotic germ cells: the spermatids. Our study shows that the 5’UTR, which is the only difference between these transcripts, determines the localization and the relative dose of the nuclear and cytoplasmic isoform of the UBA1 protein. The spermatid-specific transcript encodes for the nuclear isoform in the spermatids in the mouse suggesting that the UBA1 protein is implicated in chromatin remodeling during spermiogenesis. We have detected two mutations in the spermatid-specific region of the UBA1 gene in two infertile men: a deletion of 13bp and a G>A transition, neither of which was found in our cohort of fertile men. The deletion of 13bp diminishes the correct splicing of the spermatid-specific transcript and that the G>A transition may reduce expression of the spermatid-specific transcript. These results show that the UBA1 gene is involved in spermiogenesis, and reactivated in spermatids by its spermatid-specific transcript and that the mutations identified may induce infertility by reducing UBA1 levels in spermatids. We have also demonstrated that two variants described in the protamine codant gene PRM1C.102G>T and c.-107G>C are clearly not associated with male infertility and that the c.-107G>C is polymorphism frequently found in the congolese population.
|
6 |
Étude de SLY et de la régulation (épi)génétique des chromosomes sexuels pendant la spermiogenèse / Study of SLY and the (epi)genetic regulation of sex chromosomes during spermiogenesisMoretti, Charlotte 28 November 2016 (has links)
Globalement réprimés à la méiose (MSCI), les chromosomes sexuels sont partiellement réactivés dans les spermatides rondes avant l’arrêt général de la transcription dans les spermatozoïdes. Alors qu’il est clairement démontré que le MSCI est essentiel pour la poursuite de la spermatogenèse, la proportion de gènes réactivés ainsi que le mécanisme de régulation des chromosomes sexuels après la méiose demeurent un sujet de recherche et de débats. Chez la souris, la délétion du bras long du chromosome Y (MSYq) provoque la surexpression de plusieurs centaines de gènes, dont la majorité est portée par les chromosomes sexuels, associée à des modifications de la chromatine; ceci aboutit à la production de spermatozoïdes malformés et non-fécondants, présentant notamment une compaction anormale de leur chromatine. Sly est un des cinq gènes multicopies du MSYq et l’abolition de son expression chez la souris (souris Sly-KD) a récemment démontré qu’il est à la base de la dérégulation épigénétique des chromosomes sexuels et des problèmes de compaction de la chromatine des mâles MSYq-. De plus, les mâles avec délétion partielle de MSYq ainsi que les mâles Sly-KD produisent une descendance avec un excès de femelles, ce qui suggère l’existence d’un conflit intragénomique avec Slx, un gène multicopie homologue de Sly et porté par le chromosome X. Quel rôle pour SLY pendant la spermiogenèse ? Afin de répondre à cette question nous avons étudié les gènes cibles et les partenaires de SLY. Nous avons montré que SLY interagit avec TBL1XR1, membre inhérent au complexe répressif Ncor. De plus, localisée au niveau des promoteurs de gènes exprimés dans les spermatides et liés aux chromosomes sexuels et autosomaux, SLY contrôle des gènes impliqués dans la régulation génique et chromatinienne (e.g, variants H2A et DOT1L). Nous avons également détecté une baisse significative de la marque H3K79me2 accompagnée d’une rétention anormale des histones dans les spermatozoïdes des souris Sly-KD et proposons que DOT1L, la seule H3K79 méthyltransférase identifiée à ce jour, est essentielle au remodelage de la chromatine. Quels sont les mécanismes moléculaires du conflit intragénomique entre SLY et SLX ? Des expériences de co-immunoprécipitations ont démontré que SSTY, codée comme SLY par un gène multicopies du MSYq, interagit préférentiellement avec SLX in vivo. En outre, SLX et SLY sont capables toutes deux d’interagir avec SPIN1, homologue de SSTY et capable de se lier à H3K4me3. Ces différentes interactions entre SLX/SLY et SPIN1/SSTY pourraient participer au conflit intragénomique. Par la réévaluation de plusieurs jeux de données (RNA-Seq et ChIP-Seq) nous avons démontré que la répression des chromosomes sexuels ne persiste pas au-delà de la méiose et que le conflit intragénomique entre SLY et SLX représente une pression de sélection considérable, en partie responsable du paysage épigénétique spécifique des chromosomes sexuels et de leur enrichissement en gènes multicopies exprimés après la méiose. En conclusion, nos travaux ont permis de caractériser le mode d’action de SLX/SLY et d’identifier de nouveaux facteurs impliqués dans la régulation (épi)génétique pendant la spermiogenèse qui sont conservés chez l’homme. / Sex chromosomes in mammals are globally repressed during meiosis (MSCI ) and then partially reactivated in round spermatids prior to the transcriptional activity shut down occurring in spermatozoa. Whereas the MSCI is essential for spermatogenesis, the proportion of reactivated genes and the underlying mechanisms of the sex chromosomes regulation after meiosis is still a conundrum. In mice, deletions of the long arm of the Y chromosome (MSYq-) are responsible for the overexpression of more than hundred sex chromosome genes associated with epigenetic modifications that leads to impaired sperm functions and abnormal chromatin compaction. Sly is one of the five multicopy genes present on MSYq and Sly deficiency (Sly-KD) has recently been showed to be at the basis of the gene deregulation and sperm defects obrserved in MSYq- mice. Additionally, partially deleted MSYq males and Sly-KD mice produce offspring with a sex ratio distortion in favor of females; these observations suggest a postmeiotic intragenomic conflict involving Sly and its homolog Slx, an X-linked multicopy gene. What role for SLY during spermiogenesis? In order to decipher SLY mechanisms of action, we sought to study SLY target genes and partners. We showed that SLY interacts with TBL1XR1, an inherent member of the repressive Ncor complex. Meanwhile, we found that SLY is enriched at the promoter of spermatid expressed genes encoded both by sex chromosomes and autosomes. Additionally, SLY controls genes involved in genetic and chromatin regulation (e.g, H2A variants and DOT1L). We also observed a significant reduction of H3K79me2 levels associated with abnormal histone retention in Sly-KD spermatozoa. We propose that DOT1L, the principal H3K79 methyltransferase identified to date, is essential for chromatin remodeling in spermatids. What are the molecular mechanisms involved in the ongoing intragenomic conflict between SLY and SLX? We showed by co-immunoprecipitation that SSTY, another Y-linked multicopy gene, preferentially interacts with SLX in vivo. Furthermore, both SLX and SLY interact with SPIN1, a homolog of SSTY which is able to recognize H3K4me3. The interactions between SLX/SLY and SPIN1/SSTY could be part of the intragenomic conflict. By re-evaluating several RNA-Seq and ChIP-Seq datasets we demonstrated that MSCI does not persist beyond meiosis. We proposed that the intragenomic conflict between SLY and SLX constitutes a considerable selection pressure, partly responsible for the specific epigenetic landscape of sex chromosomes and their enrichment in multicopy genes expressed after meiosis. In conclusion, our work allowed a better understanding of the mode of action of SLX/SLY and the identification of new factors involved in the (epi)genetic regulation during spermiogenesis that are conserved in humans.
|
7 |
Fonctions des thiorédoxines sexuelles et contrôle de l’état rédox des protamines chez la drosophile / Functions of sex thioredoxins and control of protamine redox status in DrosophilaTirmarche, Samantha 23 June 2016 (has links)
Le spermatozoïde des animaux à reproduction sexuée est une cellule extrêmement spécialisée, dont la chromatine très particulière est le siège de nombreux remodelages tant lors de la gamétogenèse que lors de la formation du zygote. Chez D. melanogaster comme chez les mammifères, lors de la spermiogenèse, les histones qui condensent l'ADN sont remplacées par des petites protéines basiques spécifiques du noyau spermatique : les protamines. Cette architecture est stabilisée par des liaisons disulfures. Lors de la fécondation, ces protéines sont éliminées du noyau paternel, qui réincorporent des histones pour former une chromatine fonctionnelle. Toutefois, les mécanismes régissant la mise en place et l'enlèvement des ponts disulfures et des protamines sont inconnus chez la Drosophile.Au cours de ma thèse, j'ai démontré l'importance de deux thiorédoxines sexuelles pour la reproduction.D'une part, j'ai pu montrer que DHD, qui est une thiorédoxine strictement maternelle, est essentielle à l'éviction des protamines de la chromatine paternelle lors de la fécondation. Sans cette protéine essentielle, la décondensation du noyau mâle n'a pas lieu, les protamines ne sont pas enlevées et le développement zygotique ne peut pas avoir lieu. Cette thiorédoxine est directement responsable de la réduction des liaisons disulfures qui stabilisent la chromatine spermatique.D'autre part, j'ai démontré que TrxT, une thiorédoxine exclusivement testiculaire, est nécessaire au bon déroulement de la spermiogenèse. Sans cette protéine, les spermatides subissent des dommages à l'ADN et sont éliminées.Ce travail met en évidence les rôles essentiels des thiorédoxines sexuelles pour la reproduction / In animal sexual reproduction, spermatozoon is a very specialized cell. Its very peculiar chromatin is remodeled both during spermiogenesis and fertilization. During mammalian and drosophilian spermiogenesis, histones involved in DNA condensation are replaced with sperm specific small nuclear basic proteins : the protamines. This sperm specific architecture is stabilized by disulfide bonds. At fertilization,protamines are removed from the male nucleus and maternally-provided histones are incorporated to form a functional paternal chromatin. However, the mecanisms involved in the incorporation and the removal of protamines of their disulfide bonds are unknown in Drosophila.During my PhD, I demonstrated that two sexual thioredoxins are important for spermiogenesis and fertilization in D. melanogaster. In one hand, I showed that DHD, a female specific thioredoxin, is essential for protamine eviction at fertilization. Without this major protein, male nucleus does not decondense, protamines are not removed from sperm chromatin and zygotic development does not occur. Besides, I demonstrated that DHD is directly responsible for the reduction of the disufide bonds which stabilize sperm chromatin.On the other hand, I showed that TrxT, a testis-specific thioredoxin, is needed for spermiogenesis. Without this protein, DNA damages appear on spermatid nuclei, and those spermatozoon are then eliminated during spermatogenesis.This work highlights that drosophilian sex-specific thioredoxins are essential for sexual reproduction success
|
8 |
Variants d'histones H2BFWT et macroH2A1: de la structure à la fonction épigénétiqueBoulard, Matthieu 26 October 2007 (has links) (PDF)
Les eucaryotes expriment des variants d'histones non-alléliques en faible quantité en plus des histones conventionnels. De récentes données ont montré que ces variants d'histones sont impliqués dans de nombreuses fonctions cellulaires dont la réparation de l'ADN, la ségrégation des chromosomes ou encore le contrôle de la transcription. L'objectif de cette étude est d'améliorer la compréhension du rôle biologique des variants d'histones. Les travaux rapportés dans ce manuscrit abordent plus spécifiquement la fonction de deux variants: H2BFWT, qui joue un rôle dans la spermatogenèse chez l'homme; et macroH2A1 qui semble impliqué dans la répression transcriptionnelle.<br />Nous avons montré que malgré sa grande divergence avec H2B, l'incorporation de H2BFWT ne modifie pas la structure globale du nucléosome. Néanmoins, contrairement à l'histone somatique H2B, H2BFWT n'a pas la capacité de recruter les facteurs d'assemblage du chromosome et n'est pas requis pour la condensation du chromosome mitotique. Cette différence de comportement vis-à-vis de l'assemblage des chromosomes suggère que H2BFWT pourrait être impliqué dans l'architecture de structure d'ordre supérieur de la chromatine.<br />Dans le but d'élucider le rôle biologique de macroH2A1 in vivo, nous avons généré une lignée de souris invalidées pour macroH2A1.<br />Malgré l'abondance des investigations portant sur macroH2A1, sa fonction reste inconnue. MacroH2A1 a la particularité d'être trois fois plus grand que H2A, il comporte ainsi une extension C-terminale de fonction inconnue. Initialement macroH2A1 avait été décrit comme principalement localisé sur le chromosome X inactif. La signification biologique de cet enrichissement n'est pas comprise. In vitro, la présence de macroH2A1 interfère avec la transcription. De récentes études ont montré que certaines séquences d'ADN méthylées, incluant les gènes soumis à l'empreinte et les rétrotransposons sont enrichies en nucléosomes contenant macroH2A1. Il a également été démontré que c'est la méthylation de l'ADN, nécessaire pour la répression transcriptionnelle, qui permet le recrutement de macroH2A1 sur les rétrotransposons. Nous émettons l'hypothèse que la méthylation de l'ADN aboutirait à la répression des rétrotransposons via le recrutement de macroH2A1.<br />L'étude du phénotype des souris déficientes en macroH2A1 permet de conclure que contrairement au consensus actuel, macroH2A1 n'est pas nécessaire pour réprimer la transcription des séquences répétées incluant les rétrotransposons.<br />Les examens anatomopathologiques suggèrent que macroH2A1 pourrait être impliqué dans la régulation du métabolisme des acides gras.
|
9 |
Étude de l'instabilité trinucléotidique lors de la spermiogenèse / Study of trinucleotidic instability during spermiogenesisSimard, Olivier January 2017 (has links)
Les maladies à expansion de triplets nucléotidiques situés dans la région codante, telles que la maladie de Huntington, sont des maladies où les gènes en questions possèdent un nombre de répétitions trinucléotidiques anormalement élevé et inversement corrélé avec l'âge d‟apparition des symptômes. Plusieurs de ces maladies démontrent une anticipation paternelle, où un ajout de répétitions trinucléotidiques a lieu pendant la spermiogenèse, mais les étapes et les mécanismes impliqués sont encore mal compris. Or, la spermiogenèse est caractérisée par un remodelage drastique de la chromatine, où les histones sont ultimement remplacées par les protamines afin de compacter et protéger davantage le matériel génétique. Cette transition implique aussi un changement topologique majeur qui mène à une accumulation de superenroulement négatif qui est éliminé par la topoisomérase 2[beta]. Pour identifier les étapes précises où l'extension trinucléotidique a lieu, j'ai développé une stratégie de séparation des spermatides en utilisant la cytométrie en flux, ce qui m'a permis d'obtenir quatre populations, soit les spermatides aux étapes 1 à 9, 10 à 12, 13-14 et 15-16. J'ai appliqué cette stratégie sur un modèle de souris transgéniques pour la maladie de Huntington, ce qui a permis de démontrer par PCR que l'extension trinucléotidique des répétitions CAG a lieu à la fin du remodelage de la chromatine, soit à l'étape 14. Afin d‟élucider le mécanisme d‟extension trinucléotidique, j'ai utilisé une stratégie in vitro, basée sur l'incubation d‟extraits nucléaires actifs de spermatides avec un plasmide contenant des répétitions CAG. Cette stratégie a démontré que le superenroulement négatif libre, tel que retrouvé pendant le remodelage de la chromatine, est capable d'induire des structures secondaires dans les répétitions CAG, ce qui entraîne une cascade d‟événements menant à l'extension trinucléotidique. J'ai validé ce processus en inhibant aussi les topoisomérases de type 2 qui sont responsables d'éliminer le superenroulement. Finalement, j‟ai démontré que la protamination de l‟ADN, telle qu'observée dans les spermatides, accentue l'accumulation de stress torsionnel aux répétitions CAG, ce qui favorise leur extension. Mes travaux sur le stress torsionnel lors de la protamination suggèrent une nouvelle source potentielle d'instabilité trinucléotidique, nécessitant une caractérisation additionnelle. Cette source d'instabilité, qui est spécifique au mâle, jouerait un rôle majeur dans l'anticipation paternelle des maladies trinucléotiditiques. / Abstract : Trinucleotidic diseases, such as the Huntington disease, are genetic diseases characterized by abnormally long trinucleotidic repeats within a specific gene, which are inversely correlated with the age of onset of symptoms when within exons. Many trinucleotidic diseases display paternal anticipation, where trinucleotidic repeats are added during spermiogenesis, without any details on the mechanism or the steps involved. Interestingly, spermiogenesis is characterized by a drastic chromatin remodeling, where histones are ultimately replaced by protamines in order to achieve greater compaction and protection of DNA. This transition also involves major topological changes, where accumulation of negative supercoils are eliminated by the topoisomerase 2[beta]. In order to identify the specific steps where trinucleotidic extension occurs, I have developed a strategy to separate spermatids from mice, using flow cytrometry. This allowed me to purify four distinct spermatids population, consisting of steps 1-9, 10-12, 13-14 and 15-16 spermatids. The sorting strategy was used on a transgenic mouse model of the Huntington disease, which allowed me to determine, using PCR, that CAG extension occurs at the end of chromatin remodeling, more specifically at step 14. The mechanism of extension was investigated using an in vitro approach, based on the incubation of active nuclear extracts from spermatids with a plasmid containing CAG repeats. Using this strategy, I showed that free negative supercoils, as observed during chromatin remodeling, may lead to secondary structures, and more specifically hairpins in trinucleotidic repeats, which ultimately result in trinucleotidic extension. This hypothesis was validated by inhibiting enzymes such as type 2 topoisomerases, since they are responsible for negative supercoils removal. Moreover, I showed that DNA protamination, as observed in spermatids, may increase torsional stress at CAG repeats and leads to expansion. In conclusion, this work suggest that torsional stress induced by protamination of DNA could be a new potential source of trinucleotidic instability. Moreover, this male specific source of trinucleotidic instability could play a major role in paternal anticipation of trinucleotidic diseases.
|
10 |
Cartographie des cassures bicaténaires du remodelage chromatinien du spermatide et développement des outils techniques associés. / Genome-wide mapping of DNA double-strand breaks during spermatid chromatin remodeling and development of associated toolsGrégoire, Marie-Chantal January 2016 (has links)
Résumé : La phase haploïde de la spermatogenèse (spermiogenèse) est caractérisée par une modification importante de la structure de la chromatine et un changement de la topologie de l’ADN du spermatide. Les mécanismes par lesquels ce changement se produit ainsi que les protéines impliquées ne sont pas encore complètement élucidés. Mes travaux ont permis d’établir la présence de cassures bicaténaires transitoires pendant ce remodelage par l’essai des comètes et l’électrophorèse en champ pulsé. En procédant à des immunofluorescences sur coupes de tissus et en utilisant un extrait nucléaire hautement actif, la présence de topoisomérases ainsi que de marqueurs de systèmes de réparation a été confirmée. Les protéines de réparation identifiées font partie de systèmes sujets à l’erreur, donc cette refonte structurale de la chromatine pourrait être génétiquement instable et expliquer le biais paternel observé pour les mutations de novo dans de récentes études impliquant des criblages à haut débit.
Une technique permettant l’immunocapture spécifique des cassures bicaténaires a été développée et appliquée sur des spermatides murins représentant différentes étapes de différenciation. Les résultats de séquençage à haut débit ont montré que les cassures bicaténaires (hotspots) de la spermiogenèse se produisent en majorité dans l’ADN intergénique, notamment dans les séquences LINE1, l’ADN satellite et les répétions simples. Les hotspots contiennent aussi des motifs de liaisons des protéines des familles FOX et PRDM, dont les fonctions sont entre autres de lier et remodeler localement la chromatine condensée. Aussi, le motif de liaison de la protéine BRCA1 se trouve enrichi dans les hotspots de cassures bicaténaires. Celle-ci agit entre autres dans la réparation de l’ADN par jonction terminale non-homologue (NHEJ) et dans la réparation des adduits ADN-topoisomérase. De façon remarquable, le motif de reconnaissance de la protéine SPO11, impliquée dans la formation des cassures méiotiques, a été enrichi dans les hotspots, ce qui suggère que la machinerie méiotique serait aussi utilisée pendant la spermiogenèse pour la formation des cassures. Enfin, bien que les hotspots se localisent plutôt dans les séquences intergéniques, les gènes ciblés sont impliqués dans le développement du cerveau et des neurones. Ces résultats sont en accord avec l’origine majoritairement paternelle observée des mutations de novo associées aux troubles du spectre de l’autisme et de la schizophrénie et leur augmentation avec l’âge du père.
Puisque les processus du remodelage de la chromatine des spermatides sont conservés dans l’évolution, ces résultats suggèrent que le remodelage de la chromatine de la spermiogenèse représente un mécanisme additionnel contribuant à la formation de mutations de novo, expliquant le biais paternel observé pour certains types de mutations. / Abstract : Germline mutations may arise from several endogenous and exogenous mechanisms in both male and female. However, recent next-generation sequencing (NGS) data confirmed that de novo mutations arise primarily in males. This observation suggests that specific spermatogenesis events are involved in the male mutation bias. One potential origin for male-driven mutations is the differentiation of spermatids into spermatozoa, which involves one of the most striking and global chromatin remodeling processes, where histone-bound chromatin is converted into highly condensed protaminated DNA toroid.
Using pulse-field gel electrophoresis and comet assay on flow cytometry sorted cells, it was established that chromatin remodeling process is characterized by a transient surge in DNA double strand breaks (DSBs) in the whole population of murine spermatids, which get repaired by the end of spermiogenesis. Using a highly active nuclear extract and immunofluorescences, topoisomerases and markers of DNA repair systems were shown at these steps. Since haploid cells cannot rely on homologous recombination for templated DNA repair, it was hypothesized that this process may be genetically unstable and largely responsible for the observed male de novo mutations bias.
Although very challenging, a method allowing the specific genome-wide mapping of DSBs using NGS was developed to establish the genomic distribution of DSBs during chromatin remodeling. It was shown that intergenic regions were enriched in DSBs, particularly LINE1, satellite DNA and simple repeats. Motif finding on potential hotspots showed that proteins from FOX and PRDM families may be implicated. Although homologous recombination cannot take place during spermiogenesis, an enrichment in BRCA1 motif was found, which is also known to be implicated in NHEJ and removal of topoisomerase adducts. Topoisomerase-like SPO11 motif was also enriched suggesting that the meiotic machinery may also be implicated during chromatin remodeling. Moreover, although DSBs tend to accumulate in intergenic regions, gene ontology analysis of hotspot-containing genes showed a marked enrichment in genes related to neurons and brain development. This result hence supports the fact that neurological disease associated mutations are also male biased and associated with advanced paternal age. Since DSB formation during spermiogenesis is conserved through evolution, these results suggest that chromatin remodeling in spermatids represents a significant component in the reported male de novo mutation bias.
|
Page generated in 0.0431 seconds