• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 417
  • 181
  • 133
  • 40
  • 33
  • 25
  • 24
  • 18
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 1071
  • 165
  • 126
  • 123
  • 120
  • 119
  • 102
  • 102
  • 91
  • 89
  • 78
  • 75
  • 74
  • 73
  • 70
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Helium Assisted Sand Casting of Aluminum Alloys

Saleem, Muhammad Qaiser 28 April 2011 (has links)
Sand casting is the most widely used casting process for both ferrous and non-ferrous alloys; however, the process is marred by large grain size structures and long solidification times. The coarser microstructure has a negative effect on the mechanical properties of the cast components and the long processing time affects the overall productivity of the process. The research reported herein addresses these problems for aluminum sand castings by enhancing the rate of heat extraction from the casting by replacing air, which is typically present in the pores of the sand mold and has a relatively low thermal conductivity by helium which has a thermal conductivity that is at least five times that of air in the temperature range of interest. The effect of (1) the flow rate of helium, (2) the way in which it is introduced into the mold, and (3) the mold design on (a) the average grain size, (b) the secondary dendrite arm spacing, and (c) the room temperature tensile properties of castings is investigated and compared to their counterparts produced in a typical sand casting process. In addition, a cost analysis of the helium-assisted sand casting process is performed and an optimum set of parameters are identified. It is found that when the helium-assisted sand casting process is performed with close to the optimum parameters it produces castings that exhibit a 22 percent increase in ultimate tensile strength and a 34 percent increase in yield strength with no significant loss of ductility, no degradation in the quality of the as-cast surfaces, and no significant increase in the overall cost.
82

The Controlled Diffusion Solidification Process: Fundamentals and Principles

Symeonidis, Kimon 29 April 2009 (has links)
Aluminum based alloys can be broadly classified into two groups: casting alloys and wrought alloys. Wrought Al-based alloys exhibit superior physical and mechanical properties compared to the conventional shaped casting alloys. The wrought alloys cannot be cast into near net shapes, because they develop hot tears or hot cracks during the solidification process. For this reason these alloys are cast into ingots and are subsequently brought to final shape by mechanical processes like rolling, extrusion, drawing and forging. Invariably these processes significantly increase the cost of the final part up to 50%, and have restrained the application of the wrought alloys in applications where the cost is not a major factor. The CDS (Controlled Diffusion Solidification) is a novel process that bypasses the intermediate steps by casting the wrought alloy directly into final shape, free of hot tears, and eliminating additional deformation steps. The CDS process follows a different route from conventional casting methods. In CDS, two liquid metals of predetermined composition and temperature are mixed producing a globular microstructure instead of a dendritic one. The nondendritic microstructure minimizes the hot- tearing tendency and makes the wrought alloys more suitable to casting operations. The underlying principles and mechanisms of the CDS process have been established through both experimental work and the development of a mathematical model. The operating window of the process has been defined, and guidelines are proposed to enable application of the CDS process to various alloy systems. The reduction of the hot-tearing tendency in Al wrought alloys was experimentally verified.
83

Evolution of the Eutectic Microstructure in Chemically Modified and Unmodified Al-Si Alloys

Guthy, Hema Vardhan 04 April 2002 (has links)
Aluminum-silicon alloys are an important class of commercial non-ferrous alloys having wide ranging applications in the automotive and aerospace industries. Typical aluminum-silicon alloys have two major microstructural components, namely primary aluminum and an aluminum-silicon eutectic. While nucleation and growth of the primary aluminum in the form of dendrites have been well understood, the understanding of the evolution of the Al-Si eutectic is still incomplete. The microstructural changes caused by the addition of strontium to these alloys is another important phenomenon that still puzzles the scientific community. In this thesis, an effort has been made to understand the evolution of the Al-Si eutectic in the presence and absence of strontium through two sets of experiments: (1) Quench experiments, and (2) sessile drop experiments. The quench experiments were designed to freeze the evolution of the eutectic after various time intervals along the eutectic plateau. The sessile drop experiments were designed to study the role of surface energy in the formation of the eutectic in the presence and absence of strontium. Both experiments were conducted on high purity alloys. Using observations from these experiments, possible mechanis(s) for the evolution of the Al-Si eutectic and the effects of strontium on modifying the eutectic morphology are proposed.
84

ANALYSIS OF CASTING PROCESS FORCOMPLEX ELECTRONIC UNIT

Marcos, Rebal, Teklu, Endrias January 2009 (has links)
Most aircraft component are currently being manufactured by machining, forging, welding and also assembling such parts. However, the possibilities of cutting cost from a single component has brought about a growing trend towards looking into casting as a possible option for manufacturing aircraft parts. This thesis was done at the request of Saab Avitronics. It evaluates the possibilities of one aircraft part, a chassis for an electronic unit that was first designed to be machined from a blank, to be cast. The thesis goes through the multifaceted tasks of product development. Casting process selection, cast alloy selection as well as geometry modification were some of these tasks that were performed in this thesis. It also evaluates the performances of chosen casting processes, the design of gating systems as well as various process parameters set, by simulating the casting processes. The alloy chosen was A356.0 with a T6 temper and the casting processes chosen were plaster mold casting and rheocasting. The geometry of the original chassis, which had very thin sections and undercuts which were complex to cast, was modified and made easier to cast with an acceptable slight increase of mass and size. The modification done on the geometry as well as the gating systems used had proven to be worthwhile, as the simulation of both process showed that such a part can be casted with no crucial defects foreseen. However, probable cavities might occur at the very tip of the chassis’s thin-fins – that it has for carrying away heat. Minor subsurface porosities might also be formed, which would not impair the function of the chassis. The modified chassis was made as close to as finished piece as possible, for the purpose of reducing machining costs. The cost of producing such a part by casting was also seen to be much less than machining it from blank. This could be taken as rationale for casting the chassis with thicker sections, to avoid problems that may arise in casting, and to subsequently machine these faces later, as it would still be cheaper than machining the chassis from a blank.
85

ANALYSIS OF CASTING PROCESS FORCOMPLEX ELECTRONIC UNIT

Marcos, Rebal, Teklu, Endrias January 2009 (has links)
<p>Most aircraft component are currently being manufactured by machining, forging, welding and also assembling such parts. However, the possibilities of cutting cost from a single component has brought about a growing trend towards looking into casting as a possible option for manufacturing aircraft parts.</p><p>This thesis was done at the request of Saab Avitronics. It evaluates the possibilities of one aircraft part, a chassis for an electronic unit that was first designed to be machined from a blank, to be cast. The thesis goes through the multifaceted tasks of product development. Casting process selection, cast alloy selection as well as geometry modification were some of these tasks that were performed in this thesis. It also evaluates the performances of chosen casting processes, the design of gating systems as well as various process parameters set, by simulating the casting processes.</p><p>The alloy chosen was A356.0 with a T6 temper and the casting processes chosen were plaster mold casting and rheocasting. The geometry of the original chassis, which had very thin sections and undercuts which were complex to cast, was modified and made easier to cast with an acceptable slight increase of mass and size. The modification done on the geometry as well as the gating systems used had proven to be worthwhile, as the simulation of both process showed that such a part can be casted with no crucial defects foreseen. However, probable cavities might occur at the very tip of the chassis’s thin-fins – that it has for carrying away heat. Minor subsurface porosities might also be formed, which would not impair the function of the chassis. The modified chassis was made as close to as finished piece as possible, for the purpose of reducing machining costs. The cost of producing such a part by casting was also seen to be much less than machining it from blank. This could be taken as rationale for casting the chassis with thicker sections, to avoid problems that may arise in casting, and to subsequently machine these faces later, as it would still be cheaper than machining the chassis from a blank.</p>
86

The thermal performance of gating sprues in sand-casting systems

Pagalthivarthi, Krishnan V. 08 1900 (has links)
No description available.
87

The provision of a knowledge base for product assurance for pressure die casting

Mertz, Andreas January 1994 (has links)
No description available.
88

The influence of microalloying elements on the hot ductility of thin slab cast steel

Carpenter, Kristin. January 2004 (has links)
Thesis (Ph.D.)--University of Wollongong, 2004. / Typescript. Includes bibliographical references: leaf 192-205.
89

Experimental and computational study of fluid flow and heat transfer in the lost foam casting process

Liu, Xuejun, Bhavnani, S. H. January 2005 (has links)
Dissertation (Ph.D.)--Auburn University, / Abstract. Vita. Includes bibliographic references (p.114-125).
90

An evaluation of the castability of base metal alloys using an unconventional sprue design

Gale, Marie-Agnes G. January 1982 (has links)
Thesis (M.S.)--University of Michigan, Ann Arbor, 1982. / Typescript (photocopy). Includes bibliographical references (leaves 41-43). Also issued in print.

Page generated in 0.0647 seconds