• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Catégories abéliennes en dimension 2

Dupont, Mathieu 30 June 2008 (has links)
En algèbre de dimension 2, les 2-groupes symétriques (groupoïdes monoïdaux symétriques où tout objet a un inverse à isomorphisme près) jouent un rôle similaire à celui des groupes abéliens en algèbre de dimension 1. Le but de ce travail est de définir une notion de catégorie abélienne en dimension 2 qui soit aux 2-groupes symétriques ce que la notion de catégorie abélienne ordinaire est aux groupes abéliens. On donnera deux solutions à ce problème. La première, les catégories enrichies dans les groupoïdes abéliennes, est une généralisation des catégories abéliennes ordinaires. Dans un tel contexte, on peut développer la théorie des suites exactes et de l'homologie d'une façon proche de l'homologie dans une catégorie abélienne : on y démontre plusieurs lemmes de diagrammes classiques ainsi que l'existence de la longue suite exacte d'homologie associée à une extension de complexes de chaînes. Cela généralise des résultats connus pour les 2-groupes symétriques. L'autre solution, les catégories enrichies dans les groupoïdes 2-abéliennes (qui sont également abéliennes au sens du paragraphe précédent), imite les propriétés des 2-groupes symétriques plus spécifiques à la dimension 2, en particulier l'existence de deux systèmes de factorisation : surjectif/plein et fidèle, et plein et surjectif/fidèle. De plus, dans une catégorie enrichie dans les groupoïdes 2-abélienne, la catégorie des objets discrets est équivalente à celle des objets connexes et ces catégories sont abéliennes. Les exemples incluent, outre les 2-groupes symétriques, les 2-modules sur un 2-anneau, qui forment une catégorie enrichie dans les groupoïdes 2-abélienne. Par ailleurs, les groupoïdes internes, foncteurs internes et transformations naturelles internes à une catégorie abélienne (et, en particulier, les 2-espaces vectoriels au sens de Baez-Crans) forment une catégorie enrichie dans les groupoïdes 2-abélienne si et seulement si l'axiome du choix est satisfait dans la catégorie abélienne.
2

Catégories faiblement enrichies sur une catégorie monoïdale symétrique

Bacard, Hugo 22 June 2012 (has links) (PDF)
Dans cette thèse nous développons une théorie de catégories faiblement enrichies . Par 'faiblement' on comprendra ici une catégorie dont la composition de morphismes est associative à homotopie près; à l'inverse d'une catégorie enrichie classique où la composition est strictement associative. Il s'agit donc de notions qui apparaissent dans un contexte homotopique. Nous donnons une notion de catégorie enrichie de Segal et une notion de catégorie enrichie co-Segal; chacune de ces notions donnant lieu à une structure de catégorie supérieure. L'une des motivations de ce travail était de fournir une théorie de catégories linéaires supérieures, connues pour leur importance dans des différents domaines des mathématiques, notamment dans les géométries algébriques commutative et non-commutative. La première partie de la thèse est consacrée à la notion de catégorie enrichie de Segal. Nous définissons une telle catégorie enrichie comme morphisme (colax) de 2-catégories satisfaisant certaines conditions dites conditions de Segal . Le fil rouge de notre démarche est la définition de monoïde à homotopie près donnée par Leinster. Les monoïdes de Leinster correspondent précisément aux catégories enrichies de Segal avec un seul objet; ici on suit la coutume en théorie des catégories qui consiste à identifier un monoïde avec l'espace des endomorphismes d'un objet. Notre contribution ici est donc une généralisation des travaux de Leinster. Nous montrons comment notre formalisme couvre le cas des catégories de Segal classique, les monoïdes de Leinster et surtout apporte une définition de DG-catégorie de Segal. Les catégories enrichies 'classiques' sont des catégorie enrichies sur une catégorie monoïdale. L'École australienne a étudié la notion plus générale de catégorie enrichie lorsqu'on remplace 'monoïdale' par '2-catégorie'. Notre formalisme généralise de manière naturelle le cas australien en ajoutant de l'homotopie dans la 2-catégorie sur laquelle on enrichit. Les principaux résultats de la thèse sont dans la deuxième partie qui porte sur les catégories enrichies co-Segal. Nous avons introduit ces nouvelles structures lorsqu'on s'est aperçu que les catégories enrichies de Segal ne sont pas faciles à manipuler pour faire une théorie de l'homotopie. En effet il semble devoir imposer une condition supplémentaire qui est trop restrictive dans beaucoup de cas. Ces nouvelles catégories s'obtiennent en 'renversant' la situation du cas Segal, d'où le préfixe 'co' dans 'co-Segal'. Nous définissons une catégorie co-Segal comme morphisme (lax) de 2-catégories satisfaisant des conditions co-Segal . Ces structures se révèlent plus souples à manipuler et notamment pour faire de l'homotopie. Notre résultat principal est l'existence d'une structure de modèles au sens de Quillen sur la catégorie des précatégories co-Segal; avec comme particularité que les objets fibrants sont des catégories co-Segal. Cette structure de modèle s'obtient comme localisation de Bousfield et repose sur des méthodes initialement développées par Jardine et Joyal.

Page generated in 0.0709 seconds