• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • Tagged with
  • 9
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Combinatoire algébrique des permutations et de leurs généralisations / Algebraic combinatorics of permutations and their generalisations

Vong, Vincent 08 December 2014 (has links)
Cette thèse se situe au carrefour de la combinatoire et de l'algèbre. Elle se consacre d'une part à traduire des problèmes algébriques en des problèmes combinatoires, et inversement, utilise le formalisme algébrique pour traiter des questions combinatoires. Après un rappel des notions classiques de combinatoire et d'algèbres de Hopfavec quelques applications, nous abordons l'étude de certaines statistiques définies sur les permutations : les pics, les vallées, les doubles montées et les doubles descentes, qui sont à la base de la bijection de Françon-Viennot, elle-même débouchant sur une étude combinatoire des polynômes orthogonaux. Nous montrons qu'à partir de ces statistiques, il est possible de construire diverses sous-algèbres ou algèbres quotients de FQSym, une algèbre dont une base est indexée par les permutations. Puis, nous étudions deux suites classiques de combinatoire par une démarche non commutative : les polynômes de Gandhi, un raffinement polynomial des nombres de Genocchi, et les nombres d'Euler, une suite recelant de nombreuses propriétés combinatoires. Nous nous attachons à montrer que l'approche non commutative permet, dans la majeure partie des cas, d'obtenir de manière directe des interprétations d'identités combinatoires. Enfin, inversement, certaines questions de nature algébrique peuvent être abordées d'un point de vue combinatoire. Ainsi, à travers l'étude des algèbres dendriformes, des algèbres tridendriformes, et des quadrialgèbres, nous prouvons des questions de liberté à propos de ces algèbres grâce à la combinatoire des arbres étiquetés / This thesis is at the crossroads between combinatorics and algebra. It studies some algebraic problems from a combinatorial point of view, and conversely, some combinatorial problems have an algebraic approach which enables us tosolve them. In the first part, some classical statistics on permutations are studied: the peaks, the valleys, the double rises, and the double descents. We show that we can build sub algebras and quotients of FQSym, an algebra which basis is indexed by permutations. Then, we study classical combinatorial sequences such as Gandhi polynomials, refinements of Genocchi numbers, and Euler numbers in a non commutative way. In particular, we see that combinatorial interpretations arise naturally from the non commutative approach. Finally, we solve some freeness problems about dendriform algebras, tridendriform algebras and quadrialgebras thanks to combinatorics of some labelled trees
2

Linéarisation de structures algébriques à l'aide d'opérades et de foncteurs polynomiaux : Les équivalences quadratiques et la formule de Baker-Campbell-Hausdorff pour les variétés 2-nilpotentes / Linearization of algebraic structures with operads and polynomial functors : Quadratic equivalences and the Baker-Campbell-Hausdorff formula for 2-step nilpotent varieties

Defourneau, Thibault 25 August 2017 (has links)
Le travail de thèse contribue à établir des liens entre structures algébriques non-linéaires, décrites par des théories algébriques, et des structures algébriques linéaires, encodées par des algèbres sur une opérade linéaire. Pour les théories algébriques dont les modèles forment une catégorie semi-abélienne (ce qui inclut la plupart des structures intéressantes), un tel lien a été exhibé récemment par M. Hartl, au niveau des objets gradués associés à une nouvelle notion de suite centrale descendante des modèles d'une théorie donnée : il s'avère qu'ils ont une structure naturelle d'algèbre graduée sur une certaine opérade de groupes abéliens associée à la théorie. Le sujet de thèse s'inscrit dans le projet d'étendre ce lien au niveau global, c'est-à-dire d'établir des correspondances du type Mal'cev et Lazard dans le cas des groupes, à savoir entre les modèles nilpotents suffisamment radicables et les algèbres nilpotentes sur l'opérade linéaire correspondante (après tensorisation avec un sous-anneau des rationnels approprié). Ces correspondances jouent un rôle fondamental en théorie des groupes et commencent à faire leurs preuves en théorie des loops grâce au développement plus récent d'une théorie de Lie non-associative; on peut s'attendre à ce qu'il en soit de même dans un contexte plus général. Il est important de noter qu'aussi bien dans les correspondances classiques de Mal'cev et Lazard que dans leurs généralisations à des variétés multiples de loops (Moufang, Bruck, Bol etc.), le passage des algèbres (de Lie, de Mal'cev etc.) appropriées aux objets non-linéaires (groupes, voire loops) qui leur correspondent, est donné par une formule de Baker-Campbell-Hausdorff appropriée, déduite d'une étude de fonctions exponentielles et logarithmes. Dans la thèse, une nouvelle approche est développée pour construire une correspondance (en fait, une équivalence de catégories) du type Lazard entre une variété (dite aussi catégorie algébrique) 2- nilpotente 2-radicable (dans un sens approprié) C donnée et les algèbres sur une opérade symétrique unitaire linéaire et 2-nilpotente AbOp(C) dépendant de la variété, vivant dans la catégorie monoïdale des Z[1/2]-modules à gauche. L'anneau de fraction Z[1/2] apparaît car notre définition de 2-divisibilité d'objets de C se traduit par la condition de 2-divisibilité classique sur le premier terme de l'opérade. L'équivalence de type Lazard se construit grâce à la théorie des foncteurs polynomiaux (plus précisément quadratiques) et à la notion d'extension linéaire de catégories. L'idée principale est de chercher une équivalence quadratique (i.e un foncteur quadratique qui est une équivalence de catégories) entre une variété semi-abélienne 2-nilpotente 2-radicable donnée C et la catégorie des algèbres sur AbOp(C), que nous appellerons le foncteur de Lazard. La nouveauté principale de cette approche est de ne pas construire ce foncteur explicitement sur tous les objets et les morphismes, en utilisant une formule de BCH établie au préalable; mais au contraire de construire l'"ADN" du foncteur de Lazard, c'est-à-dire un ensemble de données minimales le caractérisant étudié dans ce travail de thèse, et d'en déduire une formule de type BCH dans notre contexte. Cette démarche devrait pouvoir se généraliser et ainsi fournir une approche nouvelle et intéressante même de la formule BCH classique. / The aim of this work consists of establishing the foundations and first steps of a research project which aims at a new understanding and generalization of the classical Baker-Campbell-Hausdorff formula with a conceptual approach, and its main application in group theory: refining a result of Mal'cev adapting the classical Lie correspondence to abstract groups, Lazard proved that the category of n-divisible n-step nilpotent groups is equivalent with the category of n-step nilpotent Lie algebras over the coefficient ring Z[1/2,…,1/n]. Generalizations to other algebraic structures than groups were obtained in the literature first for several varieties of loops (in particular Moufang, Bruck and Bol loops), and finally for all loops in recent work of Mostovoy, Pérez-Izquierdo and Shestakov. They invoke other types of algebras replacing Lie algebras in the respective context, namely Mal'cev algebras related with Moufang loops, Lie triple systems related with Bruck loops, Bol algebras with Bol algebras and finally Sabinin algebras with arbitrary loops. In each case, the associated type of algebras can be viewed as a linearization of the non-linear structure given by a given type of loops. This situation motivates a research program initiated by M. Hartl, namely of exhibiting suitable linearizations of all non-linear algebraic structures satisfying suitable conditions, namely all semiabelian varieties (of universal algebras, in the sense of universal algebra or of Lawvere). In fact, Hartl associated with any semi-abelian category C a multi-right exact (and hence multi-linear) functor operad on its abelian core. In the special case where C is a variety, this functor operad is even multicolimit preserving and by specialization is equivalent with an operad in abelian groups; the algebra type encoded by this operad provides a linearization of the given variety. Indeed, for each of the above-mentioned varieties of loops this algebra type coincides (over rational coefficients) with the one exhibited in the literature. These constructions and results are based on a new commutator theory in semi-abelian categories which itself relies on a calculus of functors in the framework of semi-abelian categories, both developed by Hartl in partial collaboration with B. Loiseau and T. Van der Linden. Now the project mentioned at the beginning constitutes the next major goal in this emerging general theory of linearization of algebraic structures: to generalize the Lazard equivalence and Baker- Campbell-Hausdorff formula to the context of semi-abelian varieties, and to deduce a way of explicitly computing the operad AbOp(C) from a given presentation of the variety C (more precisely, the operad obtained from AbOp(C) by tensoring its term of arity n with Z[1/2,…,1/n]). In the classical example of groups this would amount to deducing the structure of the Lie operad directly from the usual group axioms.
3

Propérades en Algèbre, Topologie, Géométrie et Physique Mathématique

Vallette, Bruno 11 June 2009 (has links) (PDF)
Ce mémoire contient un résumé de mes travaux sur le thème des propérades et de leurs applications en algèbre, topologie, géométrie et physique mathématique.
4

Dualité de Koszul des PROPs

Vallette, Bruno 09 December 2003 (has links) (PDF)
Nous généralisons la dualité de Koszul des algèbres et des opérades aux PROPs. Alors que les opérades sont des objets algébriques qui représentent les opérations à plusieurs entrées et une seule sortie sur les différents types d'algèbres, les PROPs modélisent les opérations à plusieurs entrées et plusieurs sorties agissant sur des structures algébriques telles que les bigèbres et les bigèbres de Lie. Nous introduisons un nouveau produit monoidal qui décrit les compositions entre ces opérations et nous restreignons notre étude à la partie connexe de chaque PROP, que nous appelons "propérade", par analogie avec les opérades. Nous généralisons aux propéades les différents objets homologiques associés aux algèbres et aux opérades comme les bar et cobar constructions, les modules et les propérades quasi-libres. Pour une propérade (resp. un PROP) donnée, nous construisons une copropérade (resp. un coPROP) dual ainsi qu'un complexe de Koszul dont l'acyclicité est un critère qui permet de déterminer si la cobar construction fournit une résolution quasi-libre, appelée modèle minimal, de la propérade (resp. du PROP) de départ. Pour démontrer ce théorème, nous introduisons une graduation supplémentaire qui provient ici des différents foncteurs analytiques engendrés par le produit monoidal. Cette théorie nous permet de définir des notions de "bigèbres" à homotopie près, sur un PROP de Koszul. Cette notion est l'équivalente au niveau des "bigèbres" de celle d'algèbre à homotpie près, qui est très importante en topologie algèbrique.
5

Cyclic operads : syntactic, algebraic and categorified aspects / Opérades cycliques : aspects syntaxiques, algébriques et catégorifiés

Obradović, Jovana 01 September 2017 (has links)
Dans cette thèse, nous examinons différents cadres pour la théorie générale des opérades cycliques de Getzler et Kapranov. Comme le suggère le titre, nous établissons des fondements théoriques de natures syntaxiques, algébriques et catégorifiées pour la notion d’opérade cyclique. Dans le traitement syntaxique, nous proposons un langage formel à la manière du lambda-calcul, appelé mu-syntaxe, en tant que représentation légère de la structure <<entries-only >> d’opérades cycliques. Contrairement à la caractérisation originale des opérades cycliques, appelée la caractérisation <<exchangeable-output>> , selon laquelle les opérations d’une opérade cyclique ont des entrées et une sortie qui peut être << échangée >> avec une entrée, les opérades cycliques <<entries-only >> sont présentées comme des généralisations d’opérades pour lesquelles une opération n’a plus des entrées et une sortie, mais seulement des entrées (c’est-à-dire pour lesquelles la sortie est <<au même niveau>> que les entrées). Grâce aux méthodes de réécriture derrière le formalisme, nous donnons une preuve pas-à-pas complète de l’équivalence entre les définitions biaisées et non biaisées des opérades cycliques.Guidés par le principe du microcosme de Baez et Dolan et par les définitions algébriques des opérades de Kelly et Fiore, dans l’approche algébrique, nous définissons les opérades cycliques à l’intérieur de la catégorie des espèces de structures de Joyal. De cette façon, la caractérisation originale << exchangeable-output>> de Getzler et Kapranov, et la caractérisation alternative <<entries-only>> des opérades cycliques de Markl, sont toutes les deux incarnées comme monoïdes dans une catégorie monoïdale des espèces de structures. En s’appuyant sur un résultat de Lamarche sur la descente pour les espèces, nous utilisons ces définitions monoïdales pour prouver l’équivalence entre les points de vue <<exchangeable-output >> et << entries-only>> pour les opérades cycliques.Enfin, nous établissons une notion d’opérade cyclique catégorifiée pour les opérades cycliques avec symétries, définies dans la catégorie des ensembles en termes de générateurs et relations. Les catégorifications que nous introduisons sont obtenues en remplaçant des ensembles d’opérations de la même arité par des catégories, en relâchant certains axiomes de la structure, comme l’associativité et la commutativité, en isomorphismes, tout en laissant l’équivariance stricte, et en formulant des conditions de cohérence pour ces isomorphismes. Le théorème de cohérence que nous prouvons a la forme << tous les diagrammes d’isomorphismes canoniques commutent >>. Pour les opérades cycliques <<entries-only>> , notre preuve a un caractère syntaxique et s’appuie sur la cohérence des opérades non symétriques catégorifiées, établie par Došen et Petrić. Nous prouvons la cohérence des opérades cycliques <<exchangeable-output >>, en relevant au cadre catégorifié l’équivalence entre les définitions <<entries-only>> et <<exchangeable-output>> , mise en place précédemment dans l’approche algébrique. / In this thesis, we examine different frameworks for the general theory of cyclic operads of Getzler and Kapranov. As suggested by the title, we set up theoretical grounds of syntactic, algebraic and categorified nature for the notion of a cyclic operad.In the syntactic treatment, we propose a lambda-calculus-style formal language, called mu-syntax, as a lightweight representation of the entries-only cyclic operad structure. As opposed to the original exchangeable-output characterisation of cyclic operads, according to which the operations of a cyclic operad have inputs and an output that can be “exchanged” with one of the inputs, the entries-only cyclic operads have only entries (i.e. the output is put on the same level as the inputs). By employing the rewriting methods behind the formalism, we give a complete step-by-step proof of the equivalence between the unbiased and biased definitions of cyclic operads.Guided by the microcosm principle of Baez and Dolan and by the algebraic definitions of operads of Kelly and Fiore, in the algebraic approach we define cyclic operads internally to the category of Joyal’s species of structures. In this way, both the original exchangeable-output characterisation of Getzler and Kapranov, and the alternative entries-only characterisation of cyclic operads of Markl are epitomised as “monoid-like” objects in “monoidal-like” categories of species. Relying on a result of Lamarche on descent for species, we use these “monoid-like” definitions to prove the equivalence between the exchangeable-output and entries-only points of view on cyclic operads.Finally, we establish a notion of categorified cyclic operad for set-based cyclic operads with symmetries, defined in terms of generators and relations. The categorifications we introduce are obtained by replacing sets of operations of the same arity with categories, by relaxing certain defining axioms, like associativity and commutativity, to isomorphisms, while leaving the equivariance strict, and by formulating coherence conditions for these isomorphisms. The coherence theorem that we prove has the form “all diagrams of canonical isomorphisms commute”.For entries-only categorified cyclic operads, our proof is of syntactic nature and relies on the coherence of categorified operads established by Došen and Petrić. We prove the coherence of exchangeable-output categorified cyclic operads by “lifting to the categorified setting” theequivalence between entries-only and exchangeable-output cyclic operads, set up previously in the algebraic approach.
6

Structures Hopf-algébriques et opéradiques sur différentes familles d'arbres / Hopf-algebraics and operadics structures on different families of trees

Mansuy, Anthony 31 May 2013 (has links)
Nous introduisons les notions de forêts préordonnées et préordonnées en tas, généralisant les constructions des forêts ordonnées et ordonnées en tas. On démontre que les algèbres des forêts préordonnées et préordonnées en tas sont des algèbres de Hopf pour le coproduit de coupes et on construit un morphisme d'algèbres de Hopf dans l'algèbre des mots tassés. Ensuite, nous définissons un autre coproduit sur les forêts préordonnées donné par la contraction d'arêtes et nous donnons une description combinatoire de morphismes définis sur des algèbres de Hopf de forêts et à valeurs dans les algèbres de Hopf de battages et de battages contractants. Par ailleurs, nous introduisons la notion d'algèbre bigreffe, généralisant les notions d'algèbres de greffes à gauche et à droite. Nous décrivons l'algèbre bigreffe libre engendrée par un générateur et nous munissons cette algèbre d'une structure d'algèbre de Hopf et d'un couplage. Nous étudions ensuite le dual de Koszul de l'operade bigreffe et nous donnons une description combinatoire de l'algèbre bigreffe dual engendrée par un générateur. A l'aide d'une méthode de réécriture, nous prouvons que l'opérade bigreffe est Koszul. Nous définissons la notion de bialgèbre bigreffe infinitésimale et nous prouvons un analogue des théorèmes de Poincaré-Birkhoff-Witt et de Cartier-Milnor-Moore pour les bialgèbres bigreffe infinitésimales connexes. Pour finir, à partir de deux opérateurs de greffes, nous construisons des algèbres de Hopf d'arbres enracinés et ordonnés $ mathbf{B}^{i} $, $ i in mathbb{N}^{ast} $, $ mathbf{B}^{infty} $ et $ mathbf{B} $ vérifiant les relations d'inclusions $ mathbf{B}^{1} subseteq hdots mathbf{B}^{i} subseteq mathbf{B}^{i+1} subseteq hdots subseteq mathbf{B}^{infty} subseteq mathbf{B} $. On munit $ mathbf{B} $ d'une structure de bialgèbre dupliciale dendriforme et on en déduit que $ mathbf{B} $ est colibre et auto-duale. Nous démontrons que $ mathbf{B} $ est engendrée comme algèbre bigreffe par un générateur. / We introduce the notions of preordered and heap-preordered forests, generalizing the construction of ordered and heap-ordered forests. We prove that the algebras of preordered and heap-preordered forests are Hopf for the cut coproduct, and we construct a Hopf morphism to the Hopf algebra of packed words. In addition, we define another coproduct on the preordered forests given by the contraction of edges, and we give a combinatorial description of morphims defined on Hopf algebras of forests with values in the Hopf algebras of shuffes or quasi-shuffles. Moreover, we introduce the notion of bigraft algebra, generalizing the notions of left and right graft algebras. We describe the free bigraft algebra generated by one generator and we endow this algebra with a Hopf algebra structure, and a pairing. Next, we study the Koszul dual of the bigraft operad and we give a combinatorial description of the free dual bigraft algebra generated by one generator. With the help of a rewriting method, we prove that the bigraft operad is Koszul. We define the notion of infinitesimal bigraft bialgebra and we prove an analogue of Poincaré-Birkhoff-Witt and Cartier-Milnor-Moore theorems for connected infinitesimal bigraft bialgebras. Finally, with two grafting operators, we construct Hopf algebras of rooted and ordered trees $ mathbf{B}^{i} $, $ i in mathbb{N}^{ast} $, $ mathbf{B}^{infty} $ and $ mathbf{B} $ satisfying the inclusion relations $ mathbf{B}^{1} subseteq hdots mathbf{B}^{i} subseteq mathbf{B}^{i+1} subseteq hdots subseteq mathbf{B}^{infty} subseteq mathbf{B} $. We endow $ mathbf{B} $ with a structure of duplicial dendriform bialgebra and we deduce that $ mathbf{B} $ is cofree and self-dual. We prove that $ mathbf{B} $ is generated as bigraft algebra by one generator.
7

About E-infinity-structures in L-algebras / Sur les E-infini-structures dans les L-algèbres

Sánchez, Jesús 06 December 2016 (has links)
Dans cette thèse nous rappelons la notion de L-algèbre, qui a pour objet d'être un modèle algébrique des types d'homotopie. L'objectif principal de cette thèse est la description d'une structure de E-infini-coalgèbre sur l'élément principal d'une L-algèbre. Ceci peut être vu comme une généralisation de la structure de E-infini-coalgèbre sur le complexe des chaînes d'un ensemble simplicial, telle que décrite par Smith dans Iterating the cobar construction, 1994. Nous construisons une E-infini-opérade, notée K, utilisée pour construire la E-infini-coalgèbre sur l'élément principal d'une L-algèbre. Cette structure de E-infini-coalgèbre montre que la L-algèbre canoniquement associée à un ensemble simplicial contient au moins autant d'information homotopique que la E-infini-coalgèbre couramment associée à un ensemble simplicial / In this thesis we recall the notion of L-algebra. L-algebras are intended as algebraic models for homotopy types. L-algebras were introduced by Alain Prouté in several talks since the eighties. The principal objective of this thesis is the description of an E-infinity-coalgebra structure on the main element of an L-algebra. This can be seen as a generalization of the E-infinity-coalgebra structure on the chain complex associated to a simplicial set given by Smith in Iterating the cobar construction, 1994. We construct an E-inifity-operad, denoted K, used to construct the E-inifity-coalgebra on the main element of a L-algebra. This E-inifity-coalgebra structure shows that the canonical L-algebra associated to a simplicial set contains at least as much homotopy information as the E-inifity-coalgebras usually associated to simplicial sets.
8

Théories homotopiques des algèbres unitaires et des opérades / Homotopy theories of unital algebras and operads

Le Grignou, Brice 14 September 2016 (has links)
Dans cette thèse, nous nous intéressons aux propriétés homotopiques des algèbres sur une opérade, desopérades elles-mêmes et des opérades colorées, dans le monde des complexes de chaînes. Nousintroduisons une nouvelle adjonction bar-cobar entre les opérades unitaires et les coopéradesconilpotentes courbées. Ceci nous permet de munir ces dernières d'une structure de modèles induite parla structure projective des opérades le long de cette adjonction, qui devient alors une équivalence deQuillen. Ce résultat permet de passer, sans perte d'information homotopique, dans le monde descoopérades qui est plus puissant : on peut y décrire, par exemple, les objets fibrants-cofibrants en termesd'opérades à homotopie près. Nous appliquons ensuite la même stratégie aux algèbres sur une opérade.Pour cela, on munit la catégorie des cogèbres sur la coopérade duale de Koszul d'une structure demodèles induite par celle de la catégorie des algèbres d'origine le long de leur adjonction bar-cobar, quidevient une équivalence de Quillen. Cela nous permet de décrire explicitement pour la première fois despropriétés homotopique des algèbres sur une opérade non nécessairement augmentée. Dans unedernière partie, nous introduisons la notion d'opérade colorée à homotopie près que nous arrivons àcomparer aux infinies-opérades de Moerdijk--Weiss au moyen d'un foncteur : le nerf dendroidal. Nousmontrons qu'il étend des constructions dues à Lurie et à Faonte et nous étudions ses propriétéshomotopiques. En particulier, sa restriction aux opérades colorées est un foncteur de Quillen à droite.Tout ceci permet de relier explicitement deux mondes des opérades supérieures / This thesis deals with the homotopical properties of algebras over an operad, of operads themselves andof colored operads, in the framework of chain complexes. We introduce a new bar-cobar adjunctionbetween unital operads and curved conilpotent cooperads. This allows us to endow the latter with aDépôt de thèseDonnées complémentairesmodel structure induced by the projective model structure on operads along this adjunction, which thenbecomes a Quillen-equivalence. This result allows us to study the homotopy theory of operads in theworld of cooperads which is more powerful: for instance, fibrant-cofibrant objects can be described interms of operads up to homotopy. We then apply the same strategy to algebras over an operad. Morespecifically, we endow the category of coalgebras over the Koszul dual cooperad with a model structureinduced by that of the category of algebras along their bar-cobar adjunction, which becomes a Quillenequivalence.This allows us to describe explicitly for the first time some homotopy properties of algebrasover a not necessarily augmented operad. In the last part, we introduce the notion of homotopy coloredoperad that we compare to Moerdijk--Weiss' infinity-operads by means of a functor: the dendroidalnerve. We show that it extends existing constructions due to Lurie and Faonte and we study itshomotopical properties. In particular, we show that its restriction to colored operads is a right Quillenfunctor. All this allows us to connect explicitly two different worlds of higher operads
9

Catégories faiblement enrichies sur une catégorie monoïdale symétrique

Bacard, Hugo 22 June 2012 (has links) (PDF)
Dans cette thèse nous développons une théorie de catégories faiblement enrichies . Par 'faiblement' on comprendra ici une catégorie dont la composition de morphismes est associative à homotopie près; à l'inverse d'une catégorie enrichie classique où la composition est strictement associative. Il s'agit donc de notions qui apparaissent dans un contexte homotopique. Nous donnons une notion de catégorie enrichie de Segal et une notion de catégorie enrichie co-Segal; chacune de ces notions donnant lieu à une structure de catégorie supérieure. L'une des motivations de ce travail était de fournir une théorie de catégories linéaires supérieures, connues pour leur importance dans des différents domaines des mathématiques, notamment dans les géométries algébriques commutative et non-commutative. La première partie de la thèse est consacrée à la notion de catégorie enrichie de Segal. Nous définissons une telle catégorie enrichie comme morphisme (colax) de 2-catégories satisfaisant certaines conditions dites conditions de Segal . Le fil rouge de notre démarche est la définition de monoïde à homotopie près donnée par Leinster. Les monoïdes de Leinster correspondent précisément aux catégories enrichies de Segal avec un seul objet; ici on suit la coutume en théorie des catégories qui consiste à identifier un monoïde avec l'espace des endomorphismes d'un objet. Notre contribution ici est donc une généralisation des travaux de Leinster. Nous montrons comment notre formalisme couvre le cas des catégories de Segal classique, les monoïdes de Leinster et surtout apporte une définition de DG-catégorie de Segal. Les catégories enrichies 'classiques' sont des catégorie enrichies sur une catégorie monoïdale. L'École australienne a étudié la notion plus générale de catégorie enrichie lorsqu'on remplace 'monoïdale' par '2-catégorie'. Notre formalisme généralise de manière naturelle le cas australien en ajoutant de l'homotopie dans la 2-catégorie sur laquelle on enrichit. Les principaux résultats de la thèse sont dans la deuxième partie qui porte sur les catégories enrichies co-Segal. Nous avons introduit ces nouvelles structures lorsqu'on s'est aperçu que les catégories enrichies de Segal ne sont pas faciles à manipuler pour faire une théorie de l'homotopie. En effet il semble devoir imposer une condition supplémentaire qui est trop restrictive dans beaucoup de cas. Ces nouvelles catégories s'obtiennent en 'renversant' la situation du cas Segal, d'où le préfixe 'co' dans 'co-Segal'. Nous définissons une catégorie co-Segal comme morphisme (lax) de 2-catégories satisfaisant des conditions co-Segal . Ces structures se révèlent plus souples à manipuler et notamment pour faire de l'homotopie. Notre résultat principal est l'existence d'une structure de modèles au sens de Quillen sur la catégorie des précatégories co-Segal; avec comme particularité que les objets fibrants sont des catégories co-Segal. Cette structure de modèle s'obtient comme localisation de Bousfield et repose sur des méthodes initialement développées par Jardine et Joyal.

Page generated in 0.0389 seconds