Spelling suggestions: "subject:"catalyst characterization"" "subject:"eatalyst characterization""
1 |
Effect of Phase Composition of Tungsten Carbide on its Catalytic Activity for Toluene HydrogenationRane, Aditya 20 October 2021 (has links) (PDF)
Commercially important hydrogenation reactions make use of precious noble metal catalysts which are becoming increasingly scarce, and the search for capable alternative catalysts prevails. Transition metal carbides of group IV-VI metals show similar catalytic behavior to platinum and are $103/kg lower in price than the precious metal catalysts. Tungsten carbide, studied in this work, can form in different stoichiometries and phase compositions depending upon synthesis methods. Synthesis of high surface area tungsten carbide with control over its phase composition remains a challenge currently. In this work, the novel isothermal synthesis method of tungsten carbide (WC, W2C) in a CH4/H2 carburization atmosphere with synthesis temperature and presence or absence of a silica support in the catalyst precursor (WO3) as process variables was investigated. The amounts of CO and H2O formed during synthesis corresponded to the amount of oxygen in the WO3 precursor. The catalysts were further characterized by X-ray diffraction to determine phase composition and crystallite size, by scanning electron microscopy to determine morphology, and by CO chemisorption to determine metallic surface area. X-ray diffraction analysis indicated the carbide catalysts to contain W2C, WC, and metallic W phases. The use of a silica-supported precursor favored the formation of a nearly phase pure, high surface area W2C rich catalyst whereas high synthesis temperature and absence of silica precursor favored formation of a low surface area WC rich catalyst. Further, the catalysts were tested for steady state activity at a W/F (weight catalyst/toluene feed rate) of 0.20-0.30 h-1, addition of H2 to a total pressure of 21 bar absolute and 250 °C, and the effect of phase composition and surface area on the activity was studied. This work resulted in the successful synthesis of 4 tungsten carbide catalysts with varying phase compositions and surface areas and correlation of their compositions and surface areas with their corresponding toluene hydrogenation activities.
|
2 |
Single molecule studies of acidity in heterogeneous catalystsSun, Xiaojiao January 1900 (has links)
Doctor of Philosophy / Department of Chemical Engineering / Keith L. Hohn / Amorphous silica-alumina is widely used as a solid acid catalyst for various reactions in oil refining and the petrochemical industry. The strength and the number of the acid sites in the material are most often believed to arise from the alumina atoms inserted into the silica lattice. The existence of the acidity distribution across the framework is a result of the local composition or the short-range interactions on the silica-alumina surface. Conventional techniques used to characterize silica-alumina provide effective information on the average acidity, but may not reflect the heterogeneity of surface acidity within the material.
Recently, it is possible to study individual catalytic sites on solid catalysts by single molecule fluorescence microscopy with high time and space resolution. Fluorophores can be chosen that emit at different wavelengths depending on the properties of the local environment. By doping these fluorophores into a solid matrix at nanomolar concentrations, individual probe molecules can be imaged. Valuable information can be extracted by analyzing changes in the fluorescence spectrum of the guest molecules within a host matrix. In this research, silica-alumina thin films were studied with single molecule fluorescence microscopy. The samples were prepared by a sol-gel method and a wide-field fluorescence microscope was used to locate and characterize the fluorescent behaviors of pH sensitive probes. In mesoporous thin films, the ratio of the dye emission at two wavelengths provides an effective means to sense the effective pH of the microenvironment in which each molecule resides. The goal of this work was to develop methods to quantify the acidity of individual micro-environments in heterogeneous networks. Pure silica films treated with external phosphate solutions of different pH values were used to provide references of the fluorescence signals from individual dye molecules. SM emission data were obtained from mesoporous Al-Si films as a function of Al content in films ranging from 0% to 20% alumina. Histograms of the emission ratio revealed that films became more acidic with increasing Al content.
The acidity on interior surfaces in zeolite pores was also of interest in this work. A microfluidic device was built to isolate the interior surface from the exterior surface. Some preliminary results showed the potential of using SM fluorescence method to study the acidic properties inside the pores of zeolite crystals.
|
3 |
Development of ring-opening catalysts for diesel quality improvementNylén, Ulf January 2004 (has links)
<p>The global oil refining industry with its present shift inproduct distribution towards fuels such as gasoline and dieselwill most likely hold the fort for many years to come. However,times will change and survival will very much depend onprocessing flexibility and being at the frontiers of refiningtechnology, a technology where catalysts play leading roles.Today oil refiners are faced with the challenge to producefuels that meet increasingly tight environmentalspecifications, in particular with respect to maximum sulphurcontent. At the same time, the quality of crude oil is becomingworse with higher amounts of polyaromatics, heteroatoms(sulphur and nitrogen) and heavy metals. In order to staycompetitive, it is desirable to upgrade dense streams withinthe refinery to value-added products. For example, upgradingthe fluid catalytic cracking (FCC) by-product light cycle oil(LCO) into a high quality diesel blending component is a veryattractive route and might involve a two-step catalyticprocess. In the first step the LCO is hydrotreated andheteroatoms are removed and polyaromatics are saturated, in thesecond step naphthenic rings are selectively opened to improvethe cetane number of the final product.</p><p>The present research is devoted to the second catalytic stepof LCO upgrading and was carried out within the framework of aEuropean Union project entitled RESCATS.</p><p>From the patent literature it is evident that iridium-basedcatalysts seem to be good candidates for ring-opening purposes.A literature survey covering ring opening of naphthenicmolecules shows the need for extending investigations toheavier model substances, more representative of the dieselfraction than model compounds such as alkylated mono C5 and C6-naphthenic rings frequently employed in academic studies.</p><p>Ring-opening catalysts, mainly Pt-Ir based, were synthesisedat KTH by two different methods: the microemulsion and theincipient wetness methods. Characterization of the catalystswas performed using a number of techniques including TPR,TEM-EDX, AFM and XPS etc. Catalytic screening at atmosphericpressure using pure indan as model substance was utilized todetect ring-opening activity and the magnitude of selectivityto desired cetane-boosting products. The development of suchring-opening catalysts is the topic of Paper I.</p><p>When designing a catalytic system aimed at refiningpetroleum, it is crucial to monitor the evolution of thesulphur distribution throughout the different stages of theprocess so that catalyst properties and reaction parameters canbe optimised. The final section of this thesis and Paper II arethus devoted to high-resolution sulphur distribution analysisby means of a sulphur chemiluminescence detector (SCD).</p><p><b>Keywords:</b>ring opening, naphthenes, cetane numberimprovement, indan, light cycle oil (LCO), Pt-Ir catalyst,catalyst characterization, aromatic sulphur compounds, GC-SCD,distribution, analysis.</p>
|
4 |
Development of ring-opening catalysts for diesel quality improvementNylén, Ulf January 2004 (has links)
The global oil refining industry with its present shift inproduct distribution towards fuels such as gasoline and dieselwill most likely hold the fort for many years to come. However,times will change and survival will very much depend onprocessing flexibility and being at the frontiers of refiningtechnology, a technology where catalysts play leading roles.Today oil refiners are faced with the challenge to producefuels that meet increasingly tight environmentalspecifications, in particular with respect to maximum sulphurcontent. At the same time, the quality of crude oil is becomingworse with higher amounts of polyaromatics, heteroatoms(sulphur and nitrogen) and heavy metals. In order to staycompetitive, it is desirable to upgrade dense streams withinthe refinery to value-added products. For example, upgradingthe fluid catalytic cracking (FCC) by-product light cycle oil(LCO) into a high quality diesel blending component is a veryattractive route and might involve a two-step catalyticprocess. In the first step the LCO is hydrotreated andheteroatoms are removed and polyaromatics are saturated, in thesecond step naphthenic rings are selectively opened to improvethe cetane number of the final product. The present research is devoted to the second catalytic stepof LCO upgrading and was carried out within the framework of aEuropean Union project entitled RESCATS. From the patent literature it is evident that iridium-basedcatalysts seem to be good candidates for ring-opening purposes.A literature survey covering ring opening of naphthenicmolecules shows the need for extending investigations toheavier model substances, more representative of the dieselfraction than model compounds such as alkylated mono C5 and C6-naphthenic rings frequently employed in academic studies. Ring-opening catalysts, mainly Pt-Ir based, were synthesisedat KTH by two different methods: the microemulsion and theincipient wetness methods. Characterization of the catalystswas performed using a number of techniques including TPR,TEM-EDX, AFM and XPS etc. Catalytic screening at atmosphericpressure using pure indan as model substance was utilized todetect ring-opening activity and the magnitude of selectivityto desired cetane-boosting products. The development of suchring-opening catalysts is the topic of Paper I. When designing a catalytic system aimed at refiningpetroleum, it is crucial to monitor the evolution of thesulphur distribution throughout the different stages of theprocess so that catalyst properties and reaction parameters canbe optimised. The final section of this thesis and Paper II arethus devoted to high-resolution sulphur distribution analysisby means of a sulphur chemiluminescence detector (SCD). Keywords:ring opening, naphthenes, cetane numberimprovement, indan, light cycle oil (LCO), Pt-Ir catalyst,catalyst characterization, aromatic sulphur compounds, GC-SCD,distribution, analysis.
|
5 |
Pyrolysis based processing of biomass and shale gas resources to fuels and chemicalsAbhijit D Talpade (11150073) 19 July 2021 (has links)
<div>Thermochemical processing using fast-pyrolysis technology has been used to upgrade feedstocks like biomass and natural gas and more recently studied for plastic recycling. This work aims to improve the selectivity to desired products from a pyrolysis process through better catalysts and reactor design.</div><div>Fast-pyrolysis of biomass to fuels is considered a promising technology due to the higher yields to liquid fuel products. However, the process suffers from low carbon efficiency to hydrocarbon products due to carbon losses to biochar, accounting for 25-40 wt.% of the product stream depending on the biomass type. Using a combination of inorganic free-model compounds, biomass pretreatments and mass spectrometric analyses coupled with lab-scale reactor experiments, the char contribution from the lignocellulosic components (cellulose, hemicellulose, and lignin) and mineral content was investigated. The lignocellulosic components were found to follow the order: Lignin > Hemicellulose > Cellulose. Addition of inorganic salts (K, Na and Ca) to cellobiose, a model compound for cellulose, was found to catalyze additional dehydration reactions on primary pyrolysis products (e.g., levoglucosan) to yield secondary products (e.g., 5-HMF), and produce more char. This knowledge of char formation contributors can enable optimization of the bio-refining process sequencing using process system engineering tools and thus achieve higher carbon efficiency for biomass conversion.</div><div>While biomass has been viewed as a future energy source, there is a need for a transition fuel with the lowest possible greenhouse gas (GHG) footprint. Shale gas, consisting primarily of methane, is a potential candidate due to its large availability and high hydrogen to carbon ratio. Recently, single-atom catalysts have been studied as stable and non-coking catalysts for the non-oxidative coupling of methane (NOCM) to higher hydrocarbons (like ethylene). However, lack of post reaction catalyst characterization and rigorous kinetic testing have raised questions on the stability of these materials. This work combines homogenous (Chemkin simulations, gas phase kinetics) and heterogeneous reaction kinetic studies (reaction orders, steady state kinetics), coupled with microscopy (Scanning and Transmission Electron Microscopy (SEM, TEM)) and surface characterization tools (BET, TGA, Raman spectroscopy, CO-IR spectroscopy) to understand the role of the solid materials during NOCM. Post reaction catalyst characterization using transmission electron microscopy (TEM) analysis on the spent samples (CH4 treated at 975 deg C for 3 hours) reveals that the materials containing Pt single atoms (SA) and Pt nanoparticles (NP) are found to sinter to particles approximately 5-7 nm in size. Ethylene hydrogenation experiments, a kinetic probe for surface Pt, shows initial ethane formation rates that are four orders of magnitude lower on the isolated Pt+2 sites, found on Pt SAs, when compared to the rates obtained if all the surface Pt were assumed to be metallic. These results suggest that single atoms are not the active sites. However, under same reaction conditions (50 mL min-1 CH4 flow and 975 deg C), the ethylene formation rates (in mol h-1) on the solid materials are 2-7 times higher than the empty tube rates, indicating that the surface plays a role during NOCM. Addition of incremental amounts of the solid material increases methane conversion, extrapolating to the bare tube conversion at zero loading. This indicates that the solid materials improve the NOCM performance.</div><div>Experiments with pure methane feeds indicate that the solid materials are found to deactivate due to coking on the surface, evidenced by the coke buildup observed using thermogravimetric analysis (TGA) and the initial time-on-stream kinetic results showing rapid methane deactivation. Raman spectroscopy on the spent catalysts indicate at the development of a similar graphite-like surface intermediate under steady state conditions on all the materials. When compared under the same reaction conditions (975 deg C, 60 mL min-1 Pure CH4 with 10% UHP N2 feed, space velocity = 39.6 L h-1 gcat-1), these coked surfaces show a linear dependence for the ethylene formation rate (in mol h-1 gcat-1) with the spent surface area of the material (in m2 gcat-1). This observation is irrespective of the type of the material studied (alpha Al2O3, Davisil SiO2, 1 wt.% Pt/CeO2, Graphene, Graphite, etc.). In conclusion, these results prove that the spent surface area is critical for NOCM.</div><div>Similar experimental setup was used to study the dehydrogenation of methane, ethane, and propane mixture in the gas phase. Initial experiments at 1 bar pressure and reaction temperatures ranging from 650-850 deg C revealed that ethylene and hydrogen are the main gas phase products, with methane acting as a diluting agent under these reaction conditions. These results could enable direct processing of the shale gas without the use of a conventional ethane/propane separation step. These results were further studied by the system engineers using ANSYS ChemkinPro. For practical applications, these experiments were suggested to be performed at much higher operating pressures (~30 bar) and low residence time (~0.2 s), with a quick quenching step added after the reactor to prevent change in the exit stream compositions. A new reaction system was built to experimentally validate these recommendations.</div>
|
6 |
Catalytic Material Design: Impact of Synthesis Conditions on the Pore Architecture and Catalytic Performance of Micro-Mesoporous Silica Supported CatalystsKane, Ashwin 05 October 2022 (has links)
No description available.
|
7 |
Characterization of Cr 2 O 3 catalysts for Cl/F exchange reactionsUenveren, Ercan 11 May 2004 (has links)
Der Cr2O3 ist einer der wichtigsten Katalysatoren im Chlor/Fluor (Cl/F) Austauschreaktionen für die Produktion von chlorofluorocarbon (CFC) Alternativen. Es wird als ein ausgezeichneter heterogener Katalysator für Fluorierung Reaktionen gegründet. Die Dismutierung von CCl2F2 wurde verwendet, um die Wirkung von Halogenierung von Chrom(III) Oxyd auf Cl/F-Austauschreaktionen zu untersuchen und um den Unterschied zwischen den inaktiven und aktiven Katalysatoren herauszufinden. Die heterogenen Reaktionen wurden in einem tubular-flow Ni Reaktor und auch unter simulierten Reaktionsbedingungen in einem Reaktor durchgeführt, wo nach der Reaktion die Photoelektronspektroskopie (XPS) und die Auger-Elektronspektroskopie (XAES) Analysen konnte direkt ohne Luftkontakt, unter so genannt "in - situ" Bedingungen gefolgt werden. Es wurde gezeigt, dass die Probleme der Behandlung von Cr (III) 2p Photoelektronenspektren so gelöst werden können, dass ihnen relevante Daten für die chemische Charakterisierung von Oberflächen entnommen werden können. Hochaufgelöste Photoelektronspektroskopie von Cr2O3 Pulverproben zeigte deutlich die Existenz von spektralen Strukturen, die mit Multiplet-Aufspaltungen im jeweiligen Cr 2p Spektrum verbunden sind. Das Spektrum kann durch eine Peakfit-Analyse vertieft interpretiert werden in dem die Anfangswerte für die Peakparameter der Multiplet-Strukturen den jeweiligen Cr L2,3 XANES Spektren entnommen werden. Vom theoretischen Gesichtspunkt sollte dasselbe Verfahren auch eine Analyse der Cr 2p Photoelektronenspektren von alpha-CrF3, CrCl3 und anderen Chrom (III) Verbindungen ermöglichen. Die Unterschiede, die im Experiment für die Cr2O3, alpha-CrF3 und CrCl Photoelektronenspektren beobachtet werden, deuten auf die Tatsache, dass, obwohl in all diesen Fällen dieselben Multiplet-Aufspaltungen für Cr3+ erwartet werden, individuelle Einflüsse der Symmetrie und Ligandenfelder die Endgestalt des jeweiligen Cr 2p Photoelektronenspektrums definieren. Eine Analyse von Cr 3s Spektren kann zusätzlich wertvolle Finger-print Informationen zu chemischen Zuständen von Chrom in Cr (III) Verbindungen erbringen. Sowohl ex-situ als auch ´´in-situ´´ ESCA zeigen, dass sobald CCl2F2 zu Cr2O3 an 390 °C geführt wird, Fluorierung sowie Chlorierung an der Katalysator-Oberfläche findet statt. Wenn die XPS Oberflächenzusammensetzung etwa 4 Atom - % Fluorierung und 6 Atom - %-Chlorierung erreicht, wird die maximale katalytische Aktivität erhalten. Die längeren Reaktionszeiten ändern bedeutsam die erhaltene Oberflächenzusammensetzung von aktiviertem Chrom(III) Oxyd nicht. Der Fluorierung und Chlorierung von Chrom(III) Oxyd wurden weiter durch verschiedenen HF und HCl Behandlungen ebenso untersucht. Die aktivierten Chrom(III) Oxyd Proben und Referenzproben mit der weithin bekannten chemischen Struktur wurden auch durch Kantennahe Röntegenabsorptionsuntersuchungen (XANES), Flugzeit-statischesekundärionenmassenspektroskopie (TOF-SSIMS), Rasterelektronenmikroskopie (SEM), Fluor-Festkörper-NMR, Pyridin-FTIR, Nasschemie (F und Cl) Analyse, Pulver Röntgensbeugung (XRD) und Oberflächen (BET) Analyse untersucht. Die Ergebnisse der Referenzproben Cr2O3, Cr (OH) 3, CrF2 (OH), CrF3.3H2O, Alpha-CrF3, Beta-CrF3 und CrCl3 und aktivierte Cr2O3 Proben wurden verglichen. Die angewandten Charakterisierungsmethoden schlagen vor, dass die Bildung der Chrom-Oxydchlorid-Fluorid-Arten, bzw. Chrom-Oxyd Halogenide, an der Oberfläche ist genügend die katalytische Aktivität zu versorgen. Die Anwesenheit jedes CrF3 und/oder CrCl3 Phasen auf den aktivierten Chrom(III) Oxyd Proben wurde nicht entdeckt. / The Cr2O3 is one of the most important catalysts in the chlorine/fluorine (Cl/F) exchange reactions for the production of chlorofluorocarbon (CFC) alternatives. It is established as an excellent heterogeneous catalyst for fluorination reactions. The dismutation of CCl2F2 was used to probe the effect of halogenation of chromia on Cl/F exchange reactions in order to find out the difference between the inactive and active catalysts. The heterogeneous reactions were performed in a continuous flow Ni reactor and also under simulated reaction conditions in a reactor where after the reaction the X-ray photoelectron spectroscopy (XPS) and the X-ray excited Auger electron spectroscopy (XAES) analyses could be followed directly without air contact, under so called ´´in-situ´´ conditions. In order to be able to apply the Cr(III) 2p XPS analysis in the proper manner the spectroscopic features of the chromium(III) compounds of O, F and Cl were re-investigated. Latest generation of XPS spectrometers, which are able to analyze non-conductive powders with ultimate energy resolution, were used to reveal multiplet splitting features and satellite emission in the Cr 2p spectra. The energy positions of the multiplets were determined by total electron yield (TEY)- X-ray absorption near edge structure (XANES) spectroscopy. Using both high resolution XPS and XANES spectra a peak-fit analysis, which is also applicable for normally resolved Cr 2p XPS spectrum, was proposed. In order to overcome the known background problem by drawing the background in the broad Cr 2p window including the high binding energy satellite, a modified Shirley background, which is a combination of a linear and Shirley function, was used. Moreover, the spectroscopic features of the Cr(III) 3s XPS spectrum, which is relatively simpler than the Cr 2p one, were also surveyed. An alternative chemical analysis was proposed by using chemical state plots for Cr 3s. Both ex- and in-situ ESCA show that as soon as Cr2O3 is conducted to CCl2F2 at 390 °C fluorination as well as chlorination takes place at the catalyst surface. When the XPS surface composition reaches approximately 4 atom-% fluorination and 6 atom-% chlorination, maximum catalytic activity is obtained. Applying longer reaction times do not change significantly the obtained surface composition of the activated chromia. The fluorination and chlorination of chromia was further investigated by various HF and HCl treatments as well. The activated chromia samples and reference samples with well known chemical structure were also characterized by XANES, time of flight - static secondary ion mass spectroscopy (TOF-SSIMS), scanning electron microscopy (SEM), fluorine solid state NMR, pyridine-FTIR, wet chemical (F and Cl) analysis, X-ray powder diffraction (XRD) and surface area (BET) analysis. The results for the references Cr2O3, Cr(OH)3, CrF2(OH), CrF3.3H2O, alpha-CrF3, beta-CrF3 and CrCl3 and activated Cr2O3 samples were compared. The applied characterization methods suggest that the formation of chromium oxide chloride fluoride species, e.g. chromium oxide halides, at the surface is sufficient to provide catalytic activity. The presence of any CrF3 and/or CrCl3 phases on the activated chromia samples was not detected.
|
Page generated in 0.1187 seconds