• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phosphate Analogues as Probes of the Catalytic Mechanisms of MurA and AroA, Two Carboxyvinyl Transferases

Zhang, Fuzhong 08 1900 (has links)
<p> The two carboxyvinyl transferases MurA and AroA are essential for bacterial survival, and are proven or potential antibiotic targets. The reactions they catalyze are chemically challenging, involving protonation of an ethylene group in the first step, and deprotonation of a methyl in the second step. In order to probe how the enzymes promote these reactions, the reverse reactions from enolpyruvyl compounds (EP-OR) plus phosphate to phosphoenolpyruvate (PEP) plus R-OH were investigated, and compared with EP-OR hydrolysis reactions catalyzed by phosphate analogues. </p> <p> Thirteen phosphate analogues were used to study EP-OR hydrolysis. Among these phosphate analogues, many could bind to the free enzymes, but only three could promote hydrolysis. The products were pyruvate and the corresponding alcohol (S3P in AroA/EPSP reaction and UDP-GicNAc in MurA/EP-UDP-GicNAc reaction). The most effective analogue was arsenate. The mechanism of the arsenate-promoted reaction was examined in detail. The hydrolysis reaction proceeded though an arseno-tetrahedral intermediate with AroA, a similar reaction pathway to the natural reaction. This arseno-tetrahedral intermediate was converted to arsenoenolpyruvate and hydrolyzed spontaneously. MurA also likely catalyzed arseno-tetrahedral intermediate formation, and appeared to catalyze arsenoenolpyruvate breakdown, though it is possible that it was a bystander in the reaction, with the tetrahedral intermediate being formed by water attack on C2 of EP-UDP-GicNAc. There was a fast solvent exchange step before EP OR was converted to arseno-THI by AroA or MurA. This strongly indicated an oxacarbenium ion like intermediate before the arseno-tetrahedral intermediate. </p> <p> The catalytic machinery for stabilizing such an unstable oxacarbenium ion like intermediate was investigated by studying ligand binding. Based on information from all the phosphate analogues, there were evidence that the enzyme undergoes an conformational change upon binding with phosphate, by which EPSP was distorted into an oxacarbenium ion like intermediate. </p> / Thesis / Master of Science (MSc)
2

Nitrogen-containing Carbonaceous Materials for Electrochemical Oxygen Reduction Reaction

Wu, Bin 03 January 2024 (has links)
Der steigende weltweite Energiebedarf treibt die Entwicklung sauberer Energiequellen voran, die dazu beitragen werden, den Verbrauch fossiler Brennstoffe zu reduzieren. Brennstoffzellen und Metall-Luft-Batterien sind vielversprechende Alternativen, um traditionelle fossile Energie zu ersetzen und durch die Reduzierung von O2 an der Kathode grünen Strom zu erzeugen. Aufgrund der langsamen Reaktionsraten der Sauerstoffreduktionsreaktion (ORR) ist hierfür jedoch elektrokatalytisches Material mit geringen Kosten und hoher Effizienz erforderlich. In den letzten Jahrzehnten wurde eine Vielzahl von Materialien als Nicht-Pt-Katalysatoren getestet, von metallfreien Katalysatoren bis hin zu Katalysatoren auf Übergangsmetallbasis. Aufgrund des mangelnden Verständnisses des Reaktionsmechanismus und der Wechselwirkung zwischen Elektrolyt und Elektrokatalysator befinden sich neue Designs stickstoffhaltiger Katalysatoren auf Kohlenstoffbasis jedoch noch in der Entwicklungsphase. Zu diesem Zweck wurden verschiedene (in situ) spektroskopische und elektrochemische Techniken eingesetzt, um die Wechselwirkung zwischen N-dotiertem Kohlenstoff und Elektrolyten sowie die katalytischen Mechanismen zu verstehen. Darüber hinaus weisen die neu entwickelten Katalysatoren für die ORR eine überlegene elektrokatalytische Leistung auf, die in dieser Dissertation ausführlich diskutiert wird. Die Struktur-Leistungs-Beziehung unserer ORR-N-dotierten Kohlenstoffkatalysatoren wurde gründlich untersucht. Diese Forschung zeigt, wie die Kombination fortschrittlicher Spektroskopietechniken, einschließlich In-situ-Spektroskopie und elektrochemischer Charakterisierung, ein tieferes Verständnis der Katalysator-/Elektrolyt-Wechselwirkung, des katalytischen Mechanismus und der optimierten elektrokatalytischen Leistung stickstoffhaltiger Kohlenstoffmaterialien, ORR-Katalysatoren, insbesondere nanoporöser N-dotierter Kohlenstoff, fördern kann Eisen-Stickstoff-codotierte Kohlenstoffmaterialien. / Increasing global energy demand drives the development of clean energy sources that will help reduce the consumption of fossil fuels. Fuel cells and metal-air batteries are promising alternatives to replace traditional fossil energy to generate green electricity by reducing O2 at the cathode. However, due to sluggish reaction rates of oxygen reduction reaction (ORR), this requires electrocatalytic material with low cost and high efficiency. Over the last few decades, a variety of materials have been tested as non-Pt catalysts, from metal-free catalysts to transition metal-based catalysts. However, due to the lack of understanding of the reaction mechanism and the interaction between electrolyte and electrocatalysts, new designs nitrogen-containing carbon-based catalysts are still under the development stage. To this aim, a variety of (in situ) spectroscopic and electrochemical techniques to understand N-doped carbon electrocatalysts/electrolyte interaction and catalytic mechanisms have been employed. Moreover, the newly-designed catalysts for ORR demonstrate superior electrocatalytic performance which are discussed in detail in this dissertation. The structure-performance relationship for our ORR N-doped carbon catalysts has been thoroughly investigated. This research highlights how the combination of advanced spectroscopy techniques including in situ spectroscopy and electrochemical characterization may promote a deeper understanding of catalyst/electrolyte interaction, catalytic mechanism and optimized electrocatalytic performance of nitrogen-containing carbon materials ORR catalysts, especially nanoporous N-doped carbon and iron-nitrogen-co-doped carbon materials.

Page generated in 0.0524 seconds