• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis and control of self-sustained instabilities in a cavity using reduced order modelling / Analyse et contrôle des instabilitiés dans une cavité par modélisation d'ordre réduit

Nagarajan, kaushik Kumar 08 February 2010 (has links)
On considère un écoulement compressible bidimensionnel, autour d'une cavité ouverte. Des d'instabilité, auto-entretenues par l'effet de rétroaction de l'écrasement de la couche de cisaillement sur le bord aval de la cavité, génèrent des émissions acoustiques qu'il faut réduire. Des simulations numériques directes (DNS) permettent d'obtenir, avec ou sans actionnement, un modèle précis de l'écoulement. A partir des champs issus de la simulation, des décompositions orthogonales de modes propres (POD) sont proposées pour bâtir, par projection de Galerkin sur les équations isentropiques, des modèles d'ordre réduit non linéaires en prenant en compte l'actionnement (le contrôle). Pour éviter la divergence temporelle, les coefficients du système dynamique non forcé sont calibrés par diverses approches originales dont une basée sur la sensiblité modale. A partir du système dynamique forcé par un actionnement multifréquentiel (présent aussi dans les DNS), un contrôle en boucle fermée linéaire quadratique gaussien est proposé sur un système linéarisé. La reconstruction de l'état est basée sur une estimation stochastique linéaire sur 6 points de pression. Le contrôle optimal obtenu s'avère être périodique à la fréquence du second mode de Rossiter, qui est exactement celles des instabilits auto-entretenues dans la cavité. Par introduction de ce contrôle dans les simulations numériques directes, nous avons obtenu une réduction du bruit (faible) sur la fréquence du contrôle. / We consider a two dimensional compressible flow around an open cavity. The Flow around a cavity is characterised by a self-sustained mechanism in which the shear layer impinges on the downstream edge of the cavity resulting in an acoustic feedback mechanism which must be reduced. Direct Numerical Simulations (DNS) of the flow at a representative Reynolds number has been carried to obtain pressure and velocity fields, both for the case of unactuated and multi frequency actuation. These fields are then used to extract energy ranked coherent structures also called as the Proper Orthogonal Decomposition (POD) modes. A Reduced Order Model is constructed by a Galerkin projections of the isentropic compressible equations. The model is then extended to include the effect of control. To avoid the divergence of the model while integrating in time various calibration techniques has been utillized. A new method of calibration which minimizes a linear functional of error, based on modal sensitivity is proposed. The calibrated low order model is used to design a feedback control of the Linear Quadratic Gaussian (LQG) type, coupled with an observer. For the experimental implementation of the controller, a state estimate based on the observed pressure measurements at 6 different locations, is obtained through a Linear Stochastic Estimation (LSE). The optimal control obtained is periodic with a frequency corresponding to the second Rossiter mode of the cavity. Finally the control obtained is introduced into the DNS to obtain a decrease in spectra of the cavity acoustic mode.
2

Optimization Capabilities for Axial Compressor Blades and Seal Teeth Cavity

Mahmood, Syed Moez Hussain 28 June 2016 (has links)
No description available.
3

A 3D pseudospectral method for cylindrical coordinates. Application to the simulations of rotating cavity flows

Peres, Noele 19 July 2012 (has links)
La simulation d'écoulements dans des cavités cylindriques en rotation présente une difficulté particulière en raison de l'apparition de singularités sur l'axe. Le présent travail propose une méthode collocative pseudospectrale suffisamment efficace et précise pour surmonter cette difficulté et résoudre les équations 3D de Navier-Stokes écrites en coordonnées cylindriques. Cette méthode a été développée dans le cadre des différentes études menées au laboratoire M2P2, utilisant une méthode collocative de type Chebychev dans les directions radiale et axiale et Fourier-Galerkin dans la direction azimutale [thêta]. Pour éviter de prescrire des conditions sur l'axe, une nouvelle approche a été développée. Le domaine de calcul est défini par (r,[thêta],z)∈[-1,1]×[0,2π]×[-1,1] avec un nombre N pair de points de collocation dans la direction radiale. Ainsi, r=0 n'est pas un point de collocation. La distribution de points de type Gauss-Lobatto selon r et z densifie le maillage seulement près des parois ce qui rend l'algorithme bien adapté pour simuler les écoulements dans des cavités cylindriques en rotation. Dans la direction azimutale, le chevauchement des points dû à la discrétisation est évitée par l'introduction d'un décalage égal à π/2K à [thêta]>π dans la transformée de Fourier. La méthode conserve la convergence spectrale. Des comparaisons avec des résultats expérimentaux et numériques de la littérature montrent un très bon accord pour des écoulements induits par la rotation d'un disque dans des cavités cylindriques fermées. / When simulating flows in cylindrical rotating cavities, a difficulty arises from the singularities appearing on the axis. In the same time, the flow field itself does not have any singularity on the axis and this singularity is only apparent. The present work proposes an efficient and accurate collocation pseudospectral method for solving the 3D Navier-Stokes equations using cylindrical coordinates. This method has been developed in the framework of different studies of rotor-stator flows, using Chebyshev collocation in the radial and axial directions and Fourier-Galerkin approximation in the azimuthal periodic direction [thêta]. To avoid the difficulty on the axis without prescribing any pole and parity conditions usually required, a new approach has been developed. The calculation domain is defined as (r,[thêta];,z)∈[-1,1]×[0,2π]×[-1,1] using an even number N of collocation points in the radial direction. Thus, r=0 is not a collocation point. The method keeps the spectral convergence. The grid-point distribution densifies the mesh only near the boundaries that makes the algorithm well-suited to simulate rotating cavity flows where thin layers develop along the walls. In the azimuthal direction, the overlap in the discretization is avoided by introducing a shift equal to π/2K for [thêta]>π in the Fourier transform. Comparisons with reliable experimental and numerical results of the literature show good quantitative agreements for flows driven by rotating discs in cylindrical cavities. Associated to a Spectral Vanishing Viscosity, the method provides very promising LES results of turbulent cavity flows with or without heat transfer.
4

Modélisation et analyse de l'interaction turbine HP-Anneau de roue / Modeling and Analysis of the High Pressure Turbine-Rotor Shroud Interactions

Tang, Etienne 13 December 2016 (has links)
L’influence de certains effets technologiques sur les performances d’une turbine n’est pas encore bien comprise. En particulier, des essais ont été réalisés par Safran Helicopter Engines sur un étage de turbine haute pression dont l’anneau de roue forme une cavité reliée à la veine au niveau de l’espace inter-grilles, dans laquelle est injecté de l’air de refroidissement. Ils ont montré une sensibilité inattendue des performances à certains paramètres géométriques. Cette thèse a pour but d’expliquer ce comportement, et d’améliorer la compréhension et la prédiction par simulation numérique de l’effet d’une telle cavité sur l’aérodynamique et l’aérothermique de la turbine. Cette problématique a été traitée à l’aide de simulations numériques RANS instationnaires, réalisées avec le code elsA. Dans un premier temps, seule une partie de la cavité a été simulée, ce qui la ramène à une simple injection d’air de refroidissement dans la veine par une fente axisymétrique. Ces calculs ont montré que l’écoulement dans la veine est profondément modifié par l’air de refroidissement. Entre autres, le tourbillon de passage au carter et l’écoulement de jeu dans le rotor sont impactés, et deviennent fortement instationnaires. Les mécanismes d’interaction entrant en jeu sont détaillés, et l’effet sur les pertes est discuté. Des calculs prenant en compte la cavité entière ont ensuite été mis en place, d’abord avec un écoulement dans la veine simplifié, puis avec l’étage de turbine complet. Ils ont permis d’identifier une structure composée de poches de gaz de veine ingéré dans la cavité et de zones d’éjection d’air de refroidissement, tournant à une vitesse inférieure à celle du rotor, et manifestement générée par une instabilité. Des structures semblables avaient déjà été identifiées dans des turbines par de nombreuses études concernant des cavités inter-disques au moyeu, mais c’est ici la première fois qu’un tel comportement est obtenu dans une cavité composée de parois fixes et débouchant au carter. L’effet de cette structure sur l’écoulement dans la veine est qualitativement identique à celui obtenu par les simulations avec seulement une partie de la cavité, mais l’intensité et la fréquence des phénomènes d’interaction entre l’air de refroidissement injecté et l’écoulement principal sont modifiés par la rotation de la structure dans la cavité. Finalement, bien que les résultats d’essai n’ont pas pu être entièrement expliqués, ces travaux ont permis d’améliorer la compréhension des phénomènes se produisant dans une telle configuration, d’identifier les défis qu’ils posent aux simulations numériques, et d’ouvrir de nouvelles pistes de recherche. / The impact of some technological effects on the performances of a turbine are not yet well understood. More specifically, tests were performed by Safran Helicopter Engines on a high pressure turbine stage featuring a cavity over the rotor shroud, connected to the main gas path in the inter-rows space. Cooling air is injected in this cavity. This experimental campaign has shown an unexpected sensitivity of the turbine performances to some geometric parameters. This thesis aims at explaining this behaviour, and at improving the understanding and the prediction through numerical simulations of the effect of such a cavity on the aerodynamic and aerothermic behaviour of the turbine. Unsteady RANS numerical simulations have been performed with the elsA code. First, simulations were set up with a small part of the cavity, which forms a simple axisymmetric slot injecting cooling air into the main gas path. These computations have shown that the flow through the stage is deeply modified by the injected cooling air. The rotor shroud passage vortex and the tip leakage flow are affected and undergo large fluctuations. The interaction mechanisms are detailed and the effect on loss generation is discussed. Then, computations modeling the full cavity were performed, beginning with a simplified annulus flow and next with the full turbine stage. They identified a flow structure made of hot annulus gas pockets ingested in the cavity and cooling air ejection zones. This structure rotates at a lower speed than the rotor, and is clearly generated by an aerodynamic instability. Similar structures had already been found in turbines by numerous studies on inter-disks cavities at the hub, but it is the first time that such a behaviour is reported in a cavity with fixed walls and located at the shroud. The effect of this structure on the flow through the annulus is qualitatively identical to that simulated with only a small part of the cavity, but the intensity and the frequency of the interaction phenomena between the cooling air and the main flow are modified because of the rotation of the cavity flow structure. Finally, even if the simulations did not manage to fully explain the experimental results, this work contributed to the improvement of the understanding of the phenomena occuring in such a configuraiton. It also identified some challenges for the modelling of these flows by numerical simulations, as well as some topics for future research.

Page generated in 0.3817 seconds