• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling and Characterization of Plane Pair Structures in High-Speed Power Delivery Systems

Chen, Guang January 2006 (has links)
The power/ground plane structure within an electronic system not only delivers power, but also provides return path for the currents associated with the propagating signals. The cavity resonances within the power/ground plane structure affect the signal integrity of the system at high frequencies. The chip complexity and clock speed continue to increase and new structures, such as meshed planes and electromagnetic bandgap structures, are used in plane pair structure design. The signal integrity analysis of the power/ground plane structure becomes exceedingly important and challenging.The primary goal of this research is an in-depth investigation of the impact of the cavity resonances associated with the plane pair structure on the signal integrity. This includes development of modeling, simulation, and measurement methodologies for accurate and efficient characterization or prediction of the time/frequency domain electrical characteristics of power/ground plane pair structures. This research is divided into three parts. First, new SPICE compatible models are proposed for the new structures, such as the meshed plane and EBG embedded plane pair designs, so that the power/ground plane designs with these new structures can be simulated efficiently. Second, the accuracy of the simulation results is vital. The behavior of the benchmark structures is simulated and simulation results are verified either experimentally or by comparing with those from tools that are proven to be accurate. Third, high frequency measurement data is vulnerable to all parasitic parameters. The factors that affect the accuracy of measured data are investigated and methods to improve the accuracy of the measured data are proposed and verified.
2

Synthèse de métamatériaux acoustiques par voie microfluidique / Microfluidic synthesis of soft acoustic metamaterials

Raffy, Simon 30 September 2014 (has links)
Ces travaux sont consacrés à la synthèse d'un nouveau type de métamatériaux acoustiques dans le domaine ultrasonore. L'étude porte sur les résonances de cavité, elles peuvent influer sur les différentes grandeurs physiques impliquées dans la propagation des ondes acoustiques. Pour amplifier les résonances, la stratégie a été de mettre en place un contraste de vitesse de phase entre la matrice et les inclusions résonantes. Pour travailler dans le domaine ultrasonore, les techniques de mise en oeuvre sont issues de la microfluidique. Les premiers échantillons sont élaborés par émulsification micrométrique assistée par robotique. Cela permet d'obtenir des polydispersités de l'ordre de 1%. Différents modes de résonances acoustiques ont ainsi été observés. Les recherches ont été poussées jusqu'à l'étude de la polydispersité (1 à 12 %) et l'analyse de systèmes comprenant deux populations de gouttes. Le reste du travail s'est fait en millifluidique avec la mise en forme de dispersions de billes de xérogel de silice avec de plus importants contrastes de vitesse. La synthèse utilisée est une réaction de type sol-gel en milieu basique salin. Le montage millifluidique a été mis en place et calibré pour cette synthèse. La réaction chimique et les particules obtenues ont été caractérisées de nombreuses manières (Raman, rhéologie, mesure de compression, de densité, BET, MEB...). Les mesures acoustiques sur de tels systèmes ont permis de mettre en évidence des gammes de fréquence pour lesquelles l'indice de réfraction acoustique était négatif les plus fortes fractions volumiques (≈ 20%). / This work is dedicated to the synthesis of a new kind of acoustic metamaterials working in the ultrasonic range. The study is based on cavity resonance which can influence physical quantities involved in acoustic wave propagation. For amplifying these resonances, a large phase velocity contrast is required between the matrix and the inclusions.For the ultrasonic range and because of size requirements, the implementation is achieved using microfluidics. First, samples are generated using robotic-assisted emulsification which leads to a very small size polydispersity, around 1%. For these calibrated emulsions, different modes of acoustic resonance are clearly identified. We then generated polydisperse samples on purpose (up to 12%) and correlated the quality factor of the resonances to the size dispersity. Then, in order to enhance the resonance magnitude, silica-based xerogels are synthesized and templated using digital millifluidics. The chemical reaction along with the final xerogel micro-beads (≈ 100 μm radius) are characterized with a large variety of techniques (Raman, rheology, compression and density measurement, BET, SEM...). Acoustic measurements on these systems show that there is a frequency range with a negative acoustic refractive index for a at high enough volume fraction of xerogel particles (20%).
3

Transfer Path Analysis of a Passenger Car

Cinkraut, Jakub January 2015 (has links)
Even though there are no regulations on the interior noise level of passenger cars, it is a significant quality aspect both for customers and for car manufacturers. The reduction of many other car noise sources pushed tyre road noise to the forefront.What is more, well known phenomenon of the tyre acoustic cavity resonance (TCR), appearing around 225 Hz, makes the interior noise noticeably worse. Some techniques to mitigate this phenomenon right at the source are discussed in this thesis, however, these has not been adopted by the tyre nor car manufacturers yet.Therefore, there is a desire to minimise at least the transmission of the acoustic or vibration energy from the tyre to the compartment. This is where methods like TPA (Transfer Path Analysis) come into play.In this thesis, two different approaches to TPA are used to investigate transmission of the TCR energy.First, the coherence based road decomposition method is used to determine whether the TCR energy is transmitted by a structure-borne or an air-borne mechanism. The same method serves to identify if the TCR noise comes mainly from the front or the rear suspension.Second, the impedance matrix method was used to determine critical structure-borne transfer paths yielding clear results indicating two critical mounts at the rear suspension which dominate the transfer of vibro-acoustic energy. Subsequent physical modification of the critical mount was tested to verify the results of the transmission study.Moreover, deflection shape analysis of the tyre, rim, front and rear suspension was performed to identify possible amplification effects of the TCR phenomenon.

Page generated in 0.0527 seconds