• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 14
  • 6
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 87
  • 17
  • 12
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Microstructure and Wear Resistance of AlCoCrFeNiTi High-Entropy Alloy Coatings Produced by HVOF

Löbel, Martin, Lindner, Thomas, Mehner, Thomas, Lampke, Thomas 30 October 2017 (has links) (PDF)
The investigation of high-entropy alloys (HEAs) has revealed many promising properties. HEAs with a high share of Al and Ti are suitable for the formation of lightweight materials. Investigations of the alloy system AlCoCrFeNiTi showed high strength, hardness, ductility, and wear resistance, which makes this special alloy interesting for surface engineering and particularly for thermal spray technology. In this study, the suitability of inert gas-atomised HEA powder for high-velocity-oxygen-fuel (HVOF) thermal spray is investigated. This process allows for high particle velocities and comparatively low process temperatures, resulting in dense coatings with a low oxidation. The microstructure and phase composition of the atomised powder and the HVOF coating were investigated, as well as the wear behaviour under various conditions. A multiphase microstructure was revealed for the powder and coating, whereas a chemically ordered bcc phase occurred as the main phase. The thermal spray process resulted in a slightly changed lattice parameter of the main phase and an additional phase. In comparison with a hard chrome-plated sample, an increase in wear resistance was achieved. Furthermore, no brittle behaviour occurred under abrasive load in the scratch test. The investigation of wear tracks showed only minor cracking and spallation under maximum load.
82

Secure Quantum Encryption

St-Jules, Michael January 2016 (has links)
To the field of cryptography, quantum mechanics is a game changer. The exploitation of quantum mechanical properties through the manipulation of quantum information, the information encoded in the state of quantum systems, would allow many protocols in use today to be broken as well as lead to the expansion of cryptography to new protocols. In this thesis, quantum encryption, i.e. encryption schemes for quantum data, is defined, along with several definitions of security, broadly divisible into semantic security and ciphertext indistinguishability, which are proven equivalent, in analogy to the foundational result by Goldwasser and Micali. Private- and public-key quantum encryption schemes are also constructed from quantum-secure cryptographic primitives, and their security is proven. Most of the results are in the joint paper Computational Security of Quantum Encryption, to appear in the 9th International Conference on Information Theoretic Security (ICITS2016).
83

The Phase composition and microstructure of AlχCoCrFeNiTi alloys for the development of high-entropy alloy systems

Lindner, Thomas, Löbel, Martin, Mehner, Thomas, Dietrich, Dagmar, Lampke, Thomas 26 June 2017 (has links)
Alloying aluminum offers the possibility of creating low-density high-entropy alloys (HEAs). Several studies that focus on the system AlCoCrFeNiTi differ in their phase determination. The effect of aluminum on the phase composition and microstructure of the compositionally complex alloy (CCA) system AlxCoCrFeNiTi was studied with variation in aluminum content (molar ratios x = 0.2, 0.8, and 1.5). The chemical composition and elemental segregation was measured for the different domains in the microstructure. The crystal structure was determined using X-ray diffraction (XRD) analysis. To identify the spatial distribution of the phases found with XRD, phase mapping with associated orientation distribution was performed using electron backscatter diffraction. This made it possible to correlate the chemical and structural conditions of the phases. The phase formation strongly depends on the aluminum content. Two different body-centered cubic (bcc) phases were found. Texture analysis proved the presence of a face-centered cubic (fcc) phase for all aluminum amounts. The hard η-(Ni, Co)3Ti phase in the x = 0.2 alloy was detected via metallographic investigation and confirmed via electron backscatter diffraction. Additionally, a centered cluster (cc) with the A12 structure type was detected in the x = 0.2 and 0.8 alloys. The correlation of structural and chemical properties as well as microstructure formation contribute to a better understanding of the alloying effects concerning the aluminum content in CCAs. Especially in the context of current developments in lightweight high-entropy alloys (HEAs), the presented results provide an approach to the development of new alloy systems.
84

Microstructure and Wear Resistance of AlCoCrFeNiTi High-Entropy Alloy Coatings Produced by HVOF

Löbel, Martin, Lindner, Thomas, Mehner, Thomas, Lampke, Thomas January 2017 (has links)
The investigation of high-entropy alloys (HEAs) has revealed many promising properties. HEAs with a high share of Al and Ti are suitable for the formation of lightweight materials. Investigations of the alloy system AlCoCrFeNiTi showed high strength, hardness, ductility, and wear resistance, which makes this special alloy interesting for surface engineering and particularly for thermal spray technology. In this study, the suitability of inert gas-atomised HEA powder for high-velocity-oxygen-fuel (HVOF) thermal spray is investigated. This process allows for high particle velocities and comparatively low process temperatures, resulting in dense coatings with a low oxidation. The microstructure and phase composition of the atomised powder and the HVOF coating were investigated, as well as the wear behaviour under various conditions. A multiphase microstructure was revealed for the powder and coating, whereas a chemically ordered bcc phase occurred as the main phase. The thermal spray process resulted in a slightly changed lattice parameter of the main phase and an additional phase. In comparison with a hard chrome-plated sample, an increase in wear resistance was achieved. Furthermore, no brittle behaviour occurred under abrasive load in the scratch test. The investigation of wear tracks showed only minor cracking and spallation under maximum load.
85

Targeting Sphingosine Kinase 2 as a Treatment for Cholangiocarcinoma

Stillman, Anthony D 01 January 2019 (has links)
Cholangiocarcinoma (CCA) has a high mortality rate and its occurrence is rising. This increase prompts the need for improved CCA treatments. Studies have suggested that CCA is highly reliant on the sphingosine-1-phosphate-receptor-2 (S1PR2) and sphingosine kinase 2 (SphK2). Recently, a competitive SphK2 inhibitor, ABC294640, has been approved for clinical trial. ABC294640 has the potential to treat CCA, which is support by a phase I clinical study that was able to temporarily treat a patient suffering from metastasized CCA with ABC294640. To determine the viability of ABC294640 as a treatment for CCA, this study focused on determining the effects of ABC294640 on rat CCA cell lines. We found that ABC294640 inhibited the growth and migration of CCA and CAFs cells. The growth and count of 3-D organotypic co-culture of CCA and CAFs, which forms the “duct-like” structures, were reduced by ABC294640. The potential of inhibiting SphK2 as a treatment for CCA is supported by our finding of increased expression of S1PR2 and SphK2 in CCA patient liver samples. In conclusion, ABC294640 represents a potential therapeutic agent for CCA.
86

High-Temperature Wear Behaviour of Spark Plasma Sintered AlCoCrFeNiTi0.5 High-Entropy Alloy

Löbel, Martin, Lindner, Thomas, Pippig, Robert, Lampke, Thomas 02 July 2019 (has links)
In this study, the wear behaviour of a powder metallurgically produced AlCoCrFeNiTi0.5 high-entropy alloy (HEAs) is investigated at elevated temperatures. Spark plasma sintering (SPS) of inert gas atomised feedstock enables the production of dense bulk material. The microstructure evolution and phase formation are analysed. The high cooling rate in the atomisation process results in spherical powder with a microstructure comprising two finely distributed body-centred cubic phases. An additional phase with a complex crystal structure precipitates during SPS processing, while no coarsening of microstructural features occurs. The wear resistance under reciprocating wear conditions increases at elevated temperatures due to the formation of a protective oxide layer under atmospherical conditions. Additionally, the coefficient of friction (COF) slightly decreases with increasing temperature. SPS processing is suitable for the production of HEA bulk material. An increase in the wear resistance at elevated temperature enables high temperature applications of the HEA system AlCoCrFeNiTi0.5.
87

Signal Processing Methods for Reliable Extraction of Neural Responses in Developmental EEG

Kumaravel, Velu Prabhakar 27 February 2023 (has links)
Studying newborns in the first days of life prior to experiencing the world provides remarkable insights into the neurocognitive predispositions that humans are endowed with. First, it helps us to improve our current knowledge of the development of a typical brain. Secondly, it potentially opens new pathways for earlier diagnosis of several developmental neurocognitive disorders such as Autism Spectrum Disorder (ASD). While most studies investigating early cognition in the literature are purely behavioural, recently there has been an increasing number of neuroimaging studies in newborns and infants. Electroencephalography (EEG) is one of the most optimal neuroimaging technique to investigate neurocognitive functions in human newborns because it is non-invasive and quick and easy to mount on the head. Since EEG offers a versatile design with custom number of channels/electrodes, an ergonomic wearable solution could help study newborns outside clinical settings such as their homes. Compared to adult EEG, newborn EEG data are different in two main aspects: 1) In experimental designs investigating stimulus-related neural responses, collected data is extremely short in length due to the reduced attentional span of newborns; 2) Data is heavily contaminated with noise due to their uncontrollable movement artifacts. Since EEG processing methods for adults are not adapted to very short data length and usually deal with well-defined, stereotyped artifacts, they are unsuitable for newborn EEG. As a result, researchers manually clean the data, which is a subjective and time-consuming task. This thesis work is specifically dedicated to developing (semi-) automated novel signal processing methods for noise removal and for extracting reliable neural responses specific to this population. The solutions are proposed for both high-density EEG for traditional lab-based research and wearable EEG for clinical applications. To this end, this thesis, first, presents novel signal processing methods applied to newborn EEG: 1) Local Outlier Factor (LOF) for detecting and removing bad/noisy channels; 2) Artifacts Subspace Reconstruction (ASR) for detecting and removing or correcting bad/noisy segments. Then, based on these algorithms and other preprocessing functionalities, a robust preprocessing pipeline, Newborn EEG Artifact Removal (NEAR), is proposed. Notably, this is the first time LOF is explored for EEG bad channel detection, despite being a popular outlier detection technique in other kinds of data such as Electrocardiogram (ECG). Even if ASR is already an established artifact real algorithm originally developed for mobile adult EEG, this thesis explores the possibility of adapting ASR for short newborn EEG data, which is the first of its kind. NEAR is validated on simulated, real newborn, and infant EEG datasets. We used the SEREEGA toolbox to simulate neurologically plausible synthetic data and contaminated a certain number of channels and segments with artifacts commonly manifested in developmental EEG. We used newborn EEG data (n = 10, age range: 1 and 4 days) recorded in our lab based on a frequency-tagging paradigm. The chosen paradigm consists of visual stimuli to investigate the cortical bases of facelike pattern processing, and the results were published in 2019. To test NEAR performance on an older population with an event-related design (ERP) and with data recorded in another lab, we also evaluated NEAR on infant EEG data recorded on 9-months-old infants (n = 14) with an ERP paradigm. The experimental paradigm for these datasets consists of auditory stimulus to investigate the electrophysiological evidence for understanding maternal speech, and the results were published in 2012. Since authors of these independent studies employed manual artifact removal, the obtained neural responses serve as ground truth for validating NEAR’s artifact removal performance. For comparative evaluation, we considered the performance of two state-of-the-art pipelines designed for older infants. Results show that NEAR is successful in recovering the neural responses (specific to the EEG paradigm and the stimuli) compared to the other pipelines. In sum, this thesis presents a set of methods for artifact removal and extraction of stimulus-related neural responses specifically adapted to newborn and infant EEG data that will hopefully contribute to strengthening the reliability and reproducibility of developmental cognitive neuroscience studies, both in research laboratories and in clinical applications.

Page generated in 0.0743 seconds