• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of intrinsic & extrinsic factors on the growth and differentiation of human mesenchymal stem cells

Li, Jing, 李靜 January 2006 (has links)
published_or_final_version / abstract / Paediatrics and Adolescent Medicine / Doctoral / Doctor of Philosophy
2

Molecular control of dendritic cell development and function

Lau, Colleen January 2015 (has links)
Dendritic cells (DCs) comprise a distinct lineage of potent antigen-presenting mononuclear phagocytes that serve as both mediators of innate immune responses and key facilitators of the adaptive immune response. DCs play both immunogenic and tolerogenic roles through their dual ability to elicit pathogen-specific T cell immunity as well as induce regulatory T cell (Treg) responses to promote tolerance in the steady state. The aim of the work presented here is to examine the normal regulatory mechanisms of DC development and function, starting with the dissection of mechanisms behind an aberrantly activated developmental pathway, followed by the exploration of new mechanisms governed by two candidate transcription factors. The first chapter of the thesis focuses on the growth factor receptor Flt3, an essential regulator of normal DC development in both mice and humans, and concurrently one of the most commonly mutated proteins found in acute myeloid leukemia (AML). We investigated the effect of its most common activating mutation in AML, the Flt3 internal tandem duplication (Flt3-ITD), and found that this mutation caused a significant cell-intrinsic expansion of all DC populations. This effect was associated with an expansion of Tregs and the ability to dampen self-reactivity, with an inability to control autoimmunity in the absence of Tregs. Thus, we describe a potential mechanism by which leukemia can modulate T cell responses and support Treg expansion indirectly through DCs, which may compromise immunosurveillance and promote leukemogenesis. The subsequent chapters explore the basic molecular mechanisms of DC development by using Flt3 expression as a guide to uncover new candidates involved in the DC transcriptional program. We show that Myc family transcription factor, Mycl1, is largely dispensable for DC development and function, contrary to recent published findings that propose a role in proliferation and T cell priming. On the other hand, we find that conditional deletion of our second candidate gene, an Ets family transcription factor, has diverse effects on DC development, monocyte homeostasis, and cytokine production. Overall, our studies highlight an unexpected molecular link between DC development and leukemogenesis, and elucidate novel mechanisms controlling DC differentiation and function.
3

Cell differentiation in response to nutrient availability : the repressor of meiosis, RME1, positively regulates invasive growth in Saccharomyces cerevisiae

Hansson, Guy Robert, 1974- 03 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2003. / ENGLISH ABSTRACT: Yeasts, like most organisms, have to survive in highly variable and hostile environments. Survival therefore requires adaptation to the changing external conditions. On the molecular level, specific adaptation to specific environmental conditions requires the yeast to be able: (i) to sense all relevant environmental parameters; (ii) to relay the perceived signals to the interior of the cell via signal transduction networks; and (iii) to implement a specific molecular response by modifying enzyme activities and by regulating transcription of the appropriate genes. The availability of nutrients is one of the major trophic factors for all unicellular organisms, including yeast. Saccharomyces cerevisiae senses the nutritional composition of the media and implements a specific developmental choice in response to the level of essential nutrients. In conditions in which ample nutrients are available, S. cerevisiae will divide mitotically and populate the growth environment. If the nutrients are exhausted, diploid S. cerevisiae cells can undergo meiosis, which produces four ascospores encased in an ascus. These ascospores are robust and provide the yeast with a means to survive adverse environmental conditions. The ascospores can lie dormant for extended periods of time until the onset of favourable growth conditions, upon which the spores will germinate, mate and give rise to a new yeast population. However, S. cerevisiae has a third developmental option, referred to as pseudohyphal and invasive growth. In growth conditions in which nutrients are limited, but not exhausted, the yeast can undergo a morphological switch, altering its budding pattern and forming chains of elongated cells that can penetrate the growth substrate to forage for nutrients. The focus of this study was on elements of the signal transduction networks regulating invasive growth in S. cerevisiae. Some components of the signal transduction pathways are well characterised, while several transcription factors that are regulated via these pathways remain poorly studied. In this study, the RMEt gene was identified for its ability to enhance starch degradation and invasive growth when present on a multiple copy plasmid. Rme1 p had previously been identified as a repressor of meiosis and, for this reason, the literature review focuses on the regulation of the meiotic process. In particular, the review focuses on the factors governing entry into meiosis in response to nutrient starvation and ploidy. Also, the transcriptional regulation of the master initiator of meiosis, IMEt, and the action of Ime1 p are included in the review. The experimental part of the study entailed a genetic analysis of the role of Rme1 p in invasive growth and starch metabolism. Epistasis analysis was conducted of Rme1 p and elements of the MAP Kinase module, as well as of the transcription factors, Mss11p, Msn1p/Mss10p, Tec1p, Phd1p and F108p. Rme1p is known to bind to the promoter of CLN2, a G1-cyclin, and enhances its expression. Therefore, the cell cyclins CLN1 and CLN2 were included in the study. The study revealed that Rme1 p functions independently or downstream of the MAP Kinase cascade and does not require Cln1 p or Cln2p to induce invasive growth. FL011/MUC1 encodes a cell wall protein that is required for invasive growth. Like the above-mentioned factors, Rme1 p requires FL011 to induce invasive growth. We identified an Rme1 p binding site in the promoter of FL011. Overexpression of Rme1p was able to induce FL01t expression, despite deletions of mss11, msn1, ttos, tee1 and phd1. In the inverse experiment, these factors were able to induce FL011 expression in an rme1 deleted strain. This would indicate that Rme1 p does not function in a hierarchical signalling system with these factors, but could function in a more general role to modify transcription. / AFRIKAANSE OPSOMMING: Die natuur is hoogs veranderlik en alle organismes, insluitende gis, moet by die omgewing kan aanpas om te kan oorleef. Baie eksterne faktore beïnvloed die ontwikkeling van die gissel. Vir die gis om by spesifieke omgewingstoestande aan te pas, moet die gis op 'n molekulêre vlak: (i) al die omgewingsparameters waarneem; (ii) die waargenome omgewingsparameters as seine na die selkern deur middel van seintransduksieweë gelei; en (iii) transkripsie van gene aktiveer of onderdruk en ensiemaktiwiteit reguleer om sodoende die gepaste molekulêre respons te implementeer. Die beskikbaarheid van voedingstowwe in die omgewing is een van die belangrikste omgewingseine wat eensellige organismes moet kan waarneem. Saccharomyces cerevisiae kan spesifieke ontwikkelingsopsies, na gelang van die voedingstowwe wat beskikbaar is, uitoefen. In groeiomstandighede waar daar 'n oorvloed van voedingstowwe is, verdeel S. cerevisiae d.m.v. mitose en vesprei dit deur die omgewing. Sodra die voedingstowwe uitgeput is, word mitose onderdruk. Diploïede S. cerevisiae inisieer meiose, wat aanleiding tot die vorming van vier spore gee. Hierdie spore bevat slegs die helfte van die ouer se chromosome en kan gevolglik met 'n ander spoor paar om weer 'n diploïede gissel te vorm. Die spore is bestand teen strawwe omgewingstoestande en kan vir lang tye oorleef. Wanneer die spoor aan gunstige groeitoestande blootgestel word, ontkiem dit om aan 'n nuwe giskolonie oorsprong te gee. S. cerevisiae het egter 'n derde ontwikkelingsopsie, naamlik pseudohife-differensiëring. Wanneer die beskikbaarheid van voedingstowwe in die omgewing afneem, maar nog nie uitgeput is nie, ondergaan die gis 'n morfologiese verandering. Hierdie verandering word gekenmerk deur selverlenging, nl. botselle wat slegs aan die een punt van die gissel vorm en dogterselle wat aan die moerderselle geheg bly. Dit lei tot die vorming van kettings van selle wat van die giskolonie af weggroei. Voorts kan die selkettings ook die groeisubstraat binnedring. Dit staan as penetrasie-groei bekend en laat die gis toe om na nuwe voedingsbronne te soek. Hierdie studie het op die elemente van seintransduksieweë, wat by penetrasiegroei betrokke is, gefokus. Sekere komponente van die seintransduksieweë is reeds goed gekarakteriseer, terwyl ander komponente nog grootliks onbekend is. In hierdie studie, word 'n rol vir RME1 in die verbetering van styselafbraak en penetrasiegroei geïdentifiseer. Aangesien Rme1 p voorheen as 'n onderdrukker van meiose geïdentifiseer is, is 'n litetaruurstudie oor die inisiasie van meiose saamgestel. Die faktore wat meiose induseer, naamlik 'n gebrek aan voedingstowwe en die sel se ploïedie, word bespreek. Die regulering van die meester inisieerder van meiosie, IME1, asook die proteïene waarmee Ime1p reageer, is ook in die studie ingesluit. Die eksperimentele deel van die studie behels die genetiese analise van Rme1 p tydens penetrasiegroei en styselhidroliese. 'n Epistase-analise tussen Rme1 p en elemente van die MAP-Kinasemodule, asook van die transkripsie faktore Mss11 p, Msn1p/Mss10p, Tec1p, Phd1p en F108p, is onderneem. Rme1p is bekend om aan die promotor van CLN2 te bind en transkripsie te induseer. Daarom is die selsikliene CLN1 en CLN2 in die studie ingesluit. Die studie dui daarop dat Rme1 ponafhanklik van die MAP-Kinasemodule funksioneer en nie Cln1 p en Cln2p benodig om penetrasiegroei te induseer nie. FL011/MUC1 kodeer vir 'n selwandproteïen wat noodsaaklik vir pentrasiegroei is. Soos in die geval van die bogenoemde faktore, benodig Rme1 p FL011 om penetrasiegroei te kan induseer. Ten spyte van mss11-, msn1-, ttos-, tec1- en phd1- delesies, kan ooruitdrukking van Rme1p die transkripsie van FL011 induseer. In die omgekeerde eksperiment kon die bogenoemde faktore FL011-transkripsie ten spyte van 'n rme1 delesie induseer. Die resultate dui daarop dat Rme1 p nie in 'n hiërargiese pad funksioneer nie, maar dat dit waarskynlik 'n meer algemene rol deur transkripsiemodifisering vervul.
4

Transcriptional Regulation of Retinal Progenitor Cells Derived from Human Induced Pluripotent Stem Cells.

Sridhar, Akshayalakshmi 22 August 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In order to develop effective cures for diseases and decipher disease pathology, the need exists to cultivate a better understanding of human development. Existing studies employ the use of animal models to study and model human development and disease phenotypes but the evolutionary differences between humans and other species slightly limit the applicability of such animal models to effectively recapitulate human development. With the development of human pluripotent stem cells (hPSCs), including Human induced Pluripotent stem cells (hiPSCs) and Human Embryonic Stem cells (hESCs), human development can now be mirrored and recapitulated in vitro. These stem cells are pluripotent, that is, they possess the potential to generate any cell type of the body including muscle cells, nerve cells or blood cells. One of the major focuses of this study is to use hiPSCs to better understand and model human retinogenesis. The retina develops within the first three months of human development, hence rendering it inaccessible to investigation via traditional methods. However, with the advent of hiPSCs, retinal cells can be generated in a culture dish and the mechanisms underlying the specification of a retinal fate can be determined. Additionally, in order to use hiPSCs for successful cell replacement therapy, non-xenogeneic conditions need to be employed to allow for fruitful transplantation tests. Hence, another emphasis of this study has been to direct hiPSCs to generate retinal cells under non-xenogeneic conditions to facilitate their use for future translation purposes.
5

Expression and Function of the PRL Family of Protein Tyrosine Phosphatase

Dumaual, Carmen Michelle 06 March 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The PRL family of enzymes constitutes a unique class of protein tyrosine phosphatase, consisting of three highly homologous members (PRL-1, PRL-2, and PRL-3). Family member PRL-3 is highly expressed in a number of tumor types and has recently gained much interest as a potential prognostic indicator of increased disease aggressiveness and poor clinical outcome for multiple human cancers. PRL-1 and PRL-2 are also known to promote a malignant phenotype in vitro, however, prior to the present study, little was known about their expression in human normal or tumor tissues. In addition, the biological function of all three PRL enzymes remains elusive and the underlying mechanisms by which they exert their effects are poorly understood. The current project was undertaken to expand our knowledge surrounding the normal cellular function of the PRL enzymes, the signaling pathways in which they operate, and the roles they play in the progression of human disease. We first characterized the tissue distribution and cell-type specific localization of PRL-1 and PRL-2 transcripts in a variety of normal and diseased human tissues using in situ hybridization. In normal, adult human tissues we found that PRL-1 and PRL-2 messages were almost ubiquitously expressed. Only highly specialized cell types, such as fibrocartilage cells, the taste buds of the tongue, and select neural cells displayed little to no expression of either transcript. In almost every other tissue and cell type examined, PRL-2 was expressed strongly while PRL-1 expression levels were variable. Each transcript was widely expressed in both proliferating and quiescent cells indicating that different tissues or cell types may display a unique physiological response to these genes. In support of this idea, we found alterations of PRL-1 and PRL-2 transcript levels in tumor samples to be highly tissue-type specific. PRL-1 expression was significantly increased in 100% of hepatocellular and gastric carcinomas, but significantly decreased in 100% of ovarian, 80% of breast, and 75% of lung tumors as compared to matched normal tissues from the same subjects. Likewise, PRL-2 expression was significantly higher in 100% of hepatocellular carcinomas, yet significantly lower in 54% of kidney carcinomas compared to matched normal specimens. PRL-1 expression was found to be associated with tumor grade in the prostate, ovary, and uterus, with patient gender in the bladder, and with patient age in the brain and skeletal muscle. These results suggest an important, but pleiotropic role for PRL-1 and PRL-2 in both normal tissue function and in the neoplastic process. These molecules may have a tumor promoting effect in some tissue types, but inhibit tumor formation or growth in others. To further elucidate the signaling pathways in which the PRLs operate, we focused on PRL-1 and used microarray and microRNA gene expression profiling to examine the global molecular changes that occur in response to stable PRL-1 overexpression in HEK293 cells. This analysis led to identification of several molecules not previously associated with PRL signaling, but whose expression was significantly altered by exogenous PRL-1 expression. In particular, Filamin A, RhoGDIalpha, and SPARC are attractive targets for novel mediators of PRL-1 function. We also found that PRL-1 has the capacity to indirectly influence the expression of target genes through regulation of microRNA levels and we provide evidence supporting previous observations suggesting that PRL-1 promotes cell proliferation, survival, migration, invasion, and metastasis by influencing multi-functional molecules, such as the Rho GTPases, that have essential roles in regulation of the cell cycle, cytoskeletal reorganization, and transcription factor function. The combined results of these studies have expanded our current understanding of the expression and function of the PRL family of enzymes as well as of the role these important signaling molecules play in the progression of human disease.
6

Expression of histone deacetylase enzymes in murine and chick optic nerve

Tiwari, Sarika January 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Epigenetic alterations have been shown to control cell type specification and differentiation leading to the changes in chromatin structure and organization of many genes. HDACs have been well documented to play an important role in both neurogenesis and gliogenesis in ganglionic eminence and cortex-derived cultures. However, the role of HDACs in glial cell type specification and differentiation in the optic nerve has not been well described. As a first step towards understanding their role in glial cell type specification, we have examined histone acetylation and methylation levels as well as the expression levels and patterns of the classical HDACs in both murine and chick optic nerve. Analysis of mRNA and protein levels in the developing optic nerve indicated that all 11 members of the classical HDAC family were expressed, with a majority declining in expression as development proceeded. Based on the localization pattern in both chick and murine optic nerve glial cells, we were able to group the classical HDACs: predominantly nuclear, nuclear and cytoplasmic, predominantly cytoplasmic. Nuclear expression of HDACs during different stages of development studied in this project in both murine and chick optic nerve glial cells suggests that HDACs play a role in stage-dependent changes in gene expression that accompany differentiation of astrocytes and oligodendrocytes. Examination of localization pattern of the HDACs is the first step towards identifying the specific HDACs involved directly in specification and differentiation of glia in optic nerve.
7

Shp2 deletion in post-migratory neural crest cells results in impaired cardiac sympathetic innervation

Lajiness, Jacquelyn D. January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Autonomic innervation of the heart begins in utero and continues during the neonatal phase of life. A balance between the sympathetic and parasympathetic arms of the autonomic nervous system is required to regulate heart rate as well as the force of each contraction. Our lab studies the development of sympathetic innervation of the early postnatal heart in a conditional knockout (cKO) of Src homology protein tyrosine phosphatase 2 (Shp2). Shp2 is a ubiquitously expressed non-receptor phosphatase involved in a variety of cellular functions including survival, proliferation, and differentiation. We targeted Shp2 in post-migratory neural crest (NC) lineages using our novel Periostin-Cre. This resulted in a fully penetrant mouse model of diminished cardiac sympathetic innervation and concomitant bradycardia that progressively worsen. Shp2 is thought to mediate its basic cellular functions through a plethora of signaling cascades including extracellular signal-regulated kinases (ERK) 1 and 2. We hypothesize that abrogation of downstream ERK1/2 signaling in NC lineages is primarily responsible for the failed sympathetic innervation phenotype observed in our mouse model. Shp2 cKOs are indistinguishable from control littermates at birth and exhibit no gross structural cardiac anomalies; however, in vivo electrocardiogram (ECG) characterization revealed sinus bradycardia that develops as the Shp2 cKO ages. Significantly, 100% of Shp2 cKOs die within 3 weeks after birth. Characterization of the expression pattern of the sympathetic nerve marker tyrosine hydroxylase (TH) revealed a loss of functional sympathetic ganglionic neurons and reduction of cardiac sympathetic axon density in Shp2 cKOs. Shp2 cKOs exhibit lineage-specific suppression of activated pERK1/2 signaling, but not of other downstream targets of Shp2 such as pAKT (phosphorylated-Protein kinase B). Interestingly, restoration of pERK signaling via lineage-specific expression of constitutively active MEK1 (Mitogen-activated protein kinase kinase1) rescued TH-positive cardiac innervation as well as heart rate. These data suggest that the diminished sympathetic cardiac innervation and the resulting ECG abnormalities are a result of decreased pERK signaling in post-migratory NC lineages.

Page generated in 0.1327 seconds