• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 18
  • 18
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Bacterial Cell Wall Synthases Require Outer Membrane Lipoprotein Cofactors

Markovski, Monica 21 June 2013 (has links)
To fortify their cytoplasmic membrane and protect it from osmotic rupture, most bacteria surround themselves with a peptidoglycan (PG) exoskeleton. The PG synthases that build this structure are called penicillin-binding proteins (PBPs). Since they are the targets of penicillin and related antibiotics, the structures and in vitro biochemical functions of the PBPs have been extensively studied. However, the in vivo functions of the PBPs and the factors they work with to build the PG meshwork remain poorly understood. PBPs work in the context of multicomponent complexes organized by cytoskeletal elements. A major outstanding question has been whether or not these complexes contain factors required for PBP function. I addressed this using Escherichia coli as a model system by taking advantage of the synthetic lethal phenotype resulting from simultaneous inactivation of the major PG synthases: PBP1a and PBP1b. Using a screen for mutants synthetically lethal with the inactivation of PBP1b, I identified LpoA as a factor required for PBP1a function. A colleague in the lab performed the analogous screen for mutants synthetically lethal with the inactivation of PBP1a and identified LpoB as a factor required for PBP1b function. We showed that the Lpo factors are outer membrane lipoproteins that form specific trans-envelope complexes with their cognate PBPs in the inner membrane and that LpoB can stimulate the activity of PBP1b in vitro. Our results reveal unexpected complexity in the control of PBP activity and indicate that they likely receive regulatory input from the outer membrane in addition to cytoskeletal elements in the cytoplasm. To investigate the role of LpoB in morphogenesis further, I took a genetic approach that has identified PBP1b* variants capable of functioning in vivo in the absence of LpoB. Preliminary characterization of these variants indicates that LpoB has cellular functions in addition to PBP1b activation and that LpoB may be important for coordinating the two different catalytic activities of PBP1b. Future study of these mutants is likely to uncover important insights into PBP function and their control by the Lpo factors. These insights may open new avenues for the development of novel therapeutics that target the PBPs.
12

Efeito da nisina sobre patógenos da mastite bovina / Effect of nisin against bovine mastitis pathogens

Cruz, Alexandra Manoela Oliveira 18 February 2009 (has links)
Made available in DSpace on 2015-03-26T13:51:46Z (GMT). No. of bitstreams: 1 01 - capa_abstract.pdf: 49767 bytes, checksum: e5dea3c6edf2dcdc8b5959cced3a994d (MD5) Previous issue date: 2009-02-18 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Mastitis is considered the main disease of dairy cows and the major cause of economic losses in dairy farms around the world. In this study, the susceptibility to nisin of different bacterial isolates that cause mastitis in cattle was determined in vitro. Furthermore, the prevalence of nisin resistance among Staphylococcus aureus isolates was analyzed and changes in the cell surface contributing to the bacteriocin resistance phenotype was characterized. Determination of minimum inhibitory concentration (MIC) to nisin indicated that most of the 250 isolates tested (87.6%), originated from cattle affected by clinic and subclinic mastitis, were susceptible to bacteriocin concentrations ranging from 3.195 &#956;mol L-1 to 100 &#956;mol L-1. Selected isolates of S. aureus that showed initial MIC values of 12.5 &#956;mol L-1 (n=7) and 50 &#956;mol L-1 (n=1), acquired resistance to nisin when grown in the presence of sublethal doses of the bacteriocin. Resistant isolates showed MIC 100 &#956;mol L-1, and maintained their phenotype even after being cultivated for approximately 120 generations in culture media without nisin. Optical microscopy images indicated that nisin induced disaggregation of the typical arrangement of S. aureus cells. Atomic force microscopy images of S. aureus showed that the surface of sensitive cells had many irregulars regions, probably caused by the extrusion of the cytoplasm. On the surface of resistant cells, no significant changes could be observed in the cell envelope. However, signs similar to scars were seen, which could have been the result of alterations in the cell envelope related to the nisin resistance phenotype. Analyses of the fatty acids profile in the cell membrane of S. aureus did not show significant differences between isolates that were nisin- sensitive and nisin-resistant. However, cultures of nisin- sensitive and nisin-resistant S. aureus showed differences (P< 0.05) in hydrophobicity and net charge of the cell membrane, indicating that the resistance phenotype is influenced by several cell wall properties. / A mastite é considerada a principal doença das vacas leiteiras, e é responsável pela maioria das perdas econômicas na pecuária de leite no mundo todo. Nesse trabalho foi determinado in vitro o perfil de sensibilidade à nisina para diferentes espécies de bactérias causadoras de mastite em bovinos. Além disso, foi analisada a ocorrência de resistência à nisina em isolados de Staphylococcus aureus e caracterizadas as alterações nas propriedades de superfície celular que contribuíram para o fenótipo de resistência à bacteriocina. A determinação da concentração inibitória mínima (CIM) de nisina indicou que a maioria (87,6%) dos 250 isolados testados, originados de bovinos acometidos por mastite clínica e sub-clínica, foram sensíveis à bacteriocina dentro da faixa de concentração de 3,195 &#956;mol L-1 e 100 &#956;mol L-1. Isolados selecionados de S. aureus que apresentavam CIM inicial de 12,5 &#956;mol L-1 (n=7) e 50 &#956;mol L- 1 (n=1), adquiriram resistência à nisina quando cultivados na presença de doses sub-letais da bacteriocina. Os isolados resistentes apresentaram CIM 100 &#956;mol L-1, e mantiveram o fenótipo de resistência mesmo quando transferidos por, aproximadamente, 120 gerações em meio de cultivo sem adição de nisina. Imagens de microscopia óptica indicaram que a nisina induziu a desagregação do arranjo típico de S. aureus. Imagens de S. aureus obtidas por microscopia de força atômica mostraram que a superfície das células sensíveis apresentou várias regiões irregulares, provavelmente decorrentes da extrusão de conteúdo citoplasmático. Na superfície das células resistentes não foram observadas deformações do envelope celular. Entretanto, observaram-se marcas semelhantes a cicatrizes que podem ter sido resultantes de alterações no envelope celular relacionadas à maior resistência à nisina. A análise do perfil de ácidos graxos de membrana de S. aureus não evidenciou diferenças significativas entre os isolados sensíveis e os resistentes à nisina. No entanto, as culturas de S. aureus sensíveis e resistentes à nisina apresentaram diferenças (P < 0,05) de hidrofobicidade e carga líquida de membrana, indicando que o fenótipo de resistência é influenciado pelas propriedades do envelope celular.
13

Compréhension des processus cellulaires associés à l' enveloppe de Bacillus subtilis : GluP, une protéase intramembranaire impliquée dans la dégradation des protéines membranaires & CmmB, un cofacteur de la synthèse de la paroi bactérienne / Understanding cell enveloppe associated processes in Bacillus subtilis : GluP, an intramembrane protease involved in membrane proteins degradation & CmmB, a cell-wall synthesis cofactor

Cordier, Baptiste 30 January 2015 (has links)
L'enveloppe cellulaire bactérienne joue plus qu'un rôle de barrière d'échange. Elle est au coeur des processus cellulaires essentiels comme la morphogenèse et la division. Cette structure abrite environ un quart des protéines codées par le génome. Le but de mon travail a été de mieux comprendre le rôle de deux protéines membranaires dans la construction et la dynamique de l'enveloppe chez Bacillus subtilis. GluP est une protéase intramembranaire rhomboïde. Ces protéases clivent des segments transmembranaires dans la membrane afin de moduler l'activité de diverses protéines. Elles participent à de nombreux processus cellulaires chez les eucaryotes. Cependant, les fonctions biologiques des rhomboïdes procaryotes sont pour l'heure presque totalement inconnues. Nos résultats suggèrent que GluP participe au contrôle qualité des protéines membranaires à la manière des pseudo-rhomboïdes associées au système ERAD eucaryote. Elle forme un complexe avec FtsH, une protéase majeure du contrôle qualité des protéines. Ce complexe est impliqué dans la dégradation d'un substrat de rhomboïde. Le rôle de GluP serait de permettre la dislocation du segment transmembranaire et faciliter la prise en charge du substrat par FtsH. Le second projet auquel j'ai participé a consisté à comprendre le rôle de la protéine CmmB dans la morphogenèse. Son absence conduit à une morphologie cellulaire élargie. CmmB semble faire partie de la machinerie de synthèse du peptidoglycane au cours de l'élongation de la paroi. Elle serait nécessaire au bon fonctionnement d'une ou de plusieurs penicillin-binding proteins (PBPs). En particulier, nous proposons que CmmB est un cofacteur de la transpeptidase PBP2a. / The bacterial cell envelope is an obligatory barrier. It is a fundamental component in essential cellular processes such as morphogenesis and cell division. It hosts about a quarter of the proteins encoded in the genome. My work was aimed at understanding the function of two membrane proteins in the building and the dynamics of the cell envelope in the model bacterium Bacillus subtilis.GluP is a rhomboid intramembrane protease. Usually, rhomboids cleave transmembrane segments within the membrane to modulate protein functions. In eukaryotes, they participate in many cellular processes and their dysfunction lead to several pathologies. However, prokaryotic rhomboid functions remain almost totally unknown. Our results suggest that GluP is involved in bacterial membrane protein quality control, in a process akin to pseudo-rhomboid dependent endoplasmic reticulum associated protein degradation in eukaryotes. GluP forms a complex with FtsH, a major protease in protein quality control. That complex is not involved in the cleavage of a membrane substrate but in its degradation. We propose that GluP is required for the dislocation of the transmembrane segment, thus facilitating full-length substrate degradation by FtsH in the cytoplasm. My thesis second objective was to understand the role of the CmmB protein in morphogenesis. The absence of CmmB leads to slightly enlarged cells. CmmB seems to belong to the peptidoglycan synthesis machinery for cell-wall elongation. Our data support the idea that it is required for the proper activity of one or several penicillin-binding proteins (PBPs). In particular, we propose that CmmB is a cofactor of the PBP2a transpeptidase.
14

Studies on the Effects of Carbon Nanomaterials and Efflux Pump Inhibitors on Biofilm Formation and Lipid Biosynthesis in Mycobacterium smegmatis

Rashmika Gunda (17555157) 07 December 2023 (has links)
<p dir="ltr">Tuberculosis remains a global health challenge, ranking as the second leading cause of mortality worldwide in 2022. The resilience of <i>Mycobacterium tuberculosis</i>, the causative agent of tuberculosis, is enhanced by the high expression of efflux pumps that confer antibiotic tolerance and the formation of biofilms that confer resistance to antibiotics. Carbon nanomaterials (CNMs) exhibit a broad-spectrum of antibacterial efficacy, making them promising candidates for combating drug-resistant bacterial strains. The effects of the novel carbon allotropes called fullertubes (C<sub>90</sub>) on any living cell have not been studied. In our study, we employed <i>Mycobacterium smegmatis</i> as a model organism for <i>M. tuberculosis</i> and exposed it to fullertubes and fullerenes. We explored the impact of these CNMs on efflux activity and biofilm formation through biochemical assays like ethidium bromide transport assay and crystal violet assay. We also investigated their impact on lipid biosynthesis associated with log-phase growth and biofilm formation using metabolic radiolabeling studies. We also investigated the effects of the efflux pump inhibitors (EPIs) piperine, berberine, 1-(1-naphthylmethyl)-piperazine and thioridazine on efflux activity, biofilm formation, and lipid biosynthesis associated with log-phase growth and biofilm formation in <i>M. smegmatis.</i> We utilized metabolic radiolabeling methods using <sup>14</sup>C-palmitic acid and <sup>14</sup>C-acetic acid which are precursors of lipid biosynthesis and analyzed the lipids by silica-thin layer chromatography and autoradiography. Our studies revealed that CNMs do not influence efflux activity. However, efflux pump inhibitors effectively block efflux activity in <i>M. smegmatis</i>. Biofilm formation was decreased by CNMs and EPIs. In biofilm cells, fullertubes increased the incorporation of radiolabeled <sup>14</sup>C-palmitic acid into glycopeptidolipids on the cell surface as well as inside the cell. Piperine and berberine affected the incorporation of the radiolabels into lipids such as trehalose monomycolate, phosphatidylethanolamine and cardiolipin in planktonic and biofilm cells. Our study provides insights into the diverse effects of CNMs and efflux pump inhibitors on <i>M. smegmatis</i>.</p>
15

Contribution de protéases pariétales dans l'activité des systémes protéolytiques de surface de Lactobacillus helveticus et streptococcus thermophilus en matrice laitière / Cell-envelope proteinases contribution to the activity of surface proteolytic systems of Lactobacillus helveticus and Streptococcus thermophilus in dairy matrix

Lecomte, Xavier 27 November 2014 (has links)
Les produits laitiers (fromages, yaourts, laits fermentés, …) représentent 10% de notre alimentation. Ces produits sont appréciés pour leur flaveur, leur texture et leurs bénéfices sur la santé. Ces caractéristiques sont dues, entre autres, aux peptides contenus dans ces produits, qui sont issus de la coupure des protéines du lait par des enzymes qui sont présentes dans le lait, ajoutées lors de la transformation ou provenant des bactéries. Comprendre et maîtriser l’élaboration des produits laitiers est donc essentiel pour améliorer et développer les aliments futurs. La fabrication des produits laitiers fermentés tels que le fromage commence par la coupure, ou protéolyse, des protéines majeures du lait (les caséines) grâce à différentes enzymes appelées protéases. Certaines sont attachées à la surface des bactéries lactiques qui sont utilisées au début de la fabrication du fromage, telles que Streptococcus thermophilus ou Lactobacillus helveticus. S. thermophilus possède une protéase de paroi, PrtS, déjà bien étudiée contrairement à L. helveticus qui possède quatre protéases de paroi, PrtH, PrtH2, PrtH3 et PrtH4, qui n’ont pas été jusqu’à présent étudiées séparément. L’objectif de ce travail de thèse est de mieux comprendre les propriétés protéolytiques de L. helveticus et S. thermophilus en déterminant comment leurs protéases participent à la protéolyse des caséines en matrice laitière. Deux stratégies ont été mises en place : exprimer une des protéases de L. helveticus dans S. thermophilus afin de l’étudier de façon indépendante et étudier l’activité de chacune des protéases chez des souches qui n’expriment qu’un seul gène de protéase de paroi. D’une part, un outil de sécrétion hétérologue fonctionnel a été mis au point chez S. thermophilus LMD-9. D’autre part, les protéases étudiées présentaient une activité caséinolytique supérieure à pH 5,2 qu’à pH 7,5 et dégradaient préférentiellement la caséine β. Enfin, PrtH3 de L. helveticus semble présenter la plus forte activité caséinolytique / Dairy products (cheeses, yoghurt, fermented milk…) represent 10% of our food. These products are appreciated thanks to their flavor, their texture and their health benefits. These characteristics are due to various compounds like peptides which come from the cutting of milk protein by enzymes. These enzymes come from the milk, are added during the fabrication or come from bacteria. To understand and to master the dairy products fabrication is essential to develop the food of tomorrow. The fabrication of fermented dairy products as cheese begins with the cutting or proteolysis of caseins, the major milk proteins, thanks to enzymes called proteinases. Some of them are attached at the surface of lactic acid bacteria which are used at the beginning of the cheese fabrication, as Streptococcus thermophilus or Lactobacillus helveticus. S. thermophilus possess one cell envelop proteinase, PrtS, already well-studied unlike L. helveticus which possess four cell envelop proteinases, PrtH, PrtH2, PrtH3 and PrtH4, which were not studied separately yet. The aim of this thesis work is to better understand the proteolytic properties of L. helveticus and S. thermophilus and identify how their proteinases adjust the hydrolysis profile of caseins in a dairy matrix.Two strategies were selected: to express one of the proteinases of L. helveticus in S. thermophilus to study it independently from the others and study each proteinase in strains which only express one proteinase gene
16

Intramembrane signal transduction and cell envelope stress response in <i>Bacillus subtilis</i> / Intramembrane Signaltransduktion und Zellhüllstress-Antwort in <i>Bacillus subtilis</i>

Jordan, Sina 01 November 2007 (has links)
No description available.
17

Phyletic Distribution and Diversification of the Phage Shock Protein Stress Response System in Bacteria and Archaea

Popp, Philipp F, Gumerov, Vadim M., Andrianova, Ekaterina P., Bewersdorf, Lisa, Mascher, Thorsten, Zhulin, Igor B., Wolf, Diana 19 March 2024 (has links)
Maintaining cell envelope integrity is of vital importance for all microorganisms. Not surprisingly, evolution has shaped conserved protein protection networks that connect stress perception, transmembrane signal transduction, and mediation of cellular responses upon cell envelope stress. The phage shock protein (Psp) stress response is one such conserved protection network. Most knowledge about the Psp response derives from studies in the Gram-negative model bacterium Escherichia coli, where the Psp system consists of several well-defined protein components. Homologous systems were identified in representatives of the Proteobacteria, Actinobacteria, and Firmicutes. However, the Psp system distribution in the microbial world remains largely unknown. By carrying out a large-scale, unbiased comparative genomics analysis, we found components of the Psp system in many bacterial and archaeal phyla and describe that the predicted Psp systems deviate dramatically from the known prototypes. The core proteins PspA and PspC have been integrated into various (often phylum-specifically) conserved protein networks during evolution. Based on protein domain-based and gene neighborhood analyses of pspA and pspC homologs, we built a natural classification system for Psp networks in bacteria and archaea. We validate our approach by performing a comprehensive in vivo protein interaction study of Psp domains identified in the Gram-positive model organism Bacillus subtilis and found a strong interconnected protein network. Our study highlights the diversity of Psp domain organizations and potentially diverse functions across the plethora of the microbial landscape, thus laying the ground for studies beyond known Psp functions in underrepresented organisms.
18

Synthesis and mechanism-of-action of a novel synthetic antibiotic based on a dendritic system with bow-tie topology

Revilla-Guarinos, Ainhoa, Popp, Philipp F., Dürr, Franziska, Lozano-Cruz, Tania, Hartig, Johanna, de la Mata, Francisco Javier, Gómez, Rafael, Mascher, Thorsten 21 May 2024 (has links)
Over the course of the last decades, the continuous exposure of bacteria to antibiotics—at least in parts due to misprescription, misuse, and misdosing—has led to the widespread development of antimicrobial resistances. This development poses a threat to the available medication in losing their effectiveness in treating bacterial infections. On the drug development side, only minor advances have been made to bring forward novel therapeutics. In addition to increasing the efforts and approaches of tapping the natural sources of new antibiotics, synthetic approaches to developing novel antimicrobials are being pursued. In this study, BDTL049 was rationally designed using knowledge based on the properties of natural antibiotics. BDTL049 is a carbosilane dendritic system with bow-tie type topology, which has antimicrobial activity at concentrations comparable to clinically established natural antibiotics. In this report, we describe its mechanism of action on the Gram-positive model organism Bacillus subtilis. Exposure to BDTL049 resulted in a complex transcriptional response, which pointed toward disturbance of the cell envelope homeostasis accompanied by disruption of other central cellular processes of bacterial metabolism as the primary targets of BDTL049 treatment. By applying a combination of whole-cell biosensors, molecular staining, and voltage sensitive dyes, we demonstrate that the mode of action of BDTL049 comprises membrane depolarization concomitant with pore formation. As a result, this new molecule kills Gram-positive bacteria within minutes. Since BDTL049 attacks bacterial cells at different targets simultaneously, this might decrease the chances for the development of bacterial resistances, thereby making it a promising candidate for a future antimicrobial agent.

Page generated in 0.0815 seconds