• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 12
  • 1
  • Tagged with
  • 26
  • 26
  • 12
  • 12
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regulation of GABA [subscript] A receptors by hypoxia in rat primary cortical neurons

Wang, Liping. January 2009 (has links)
Dissertation (Ph.D.)--University of Toledo, 2009. / "Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Sciences." Title from title page of PDF document. Table of contents (p. iv) gives incorrect starting page numbers for "Bibliography" and "Abstract". "Bibliography" starts on p. 120 (not p. 119); "Abstract" starts on p. 150. Bibliography: p. 64-70, 97-100, 120-149.
2

Effects of hypoxia and antiepileptic drugs on electrophysiological properties of CA1 neurons in hippocampus /

Englund, Marita, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 3 uppsatser.
3

Role of Fam60a in the regulation of HIF-2α and determination of stem cell fate

Biddlestone, John January 2014 (has links)
Hypoxia (low tissue oxygenation) is an important signalling cue for many cell types. The study of its effects has direct relevance to surgery since hypoxic gradients are generated with every cut. On a cellular level, changes in molecular oxygen are sensed by the Hypoxia-Inducible Factors (HIFs). The HIFs are a family of transcription factors that are master regulators of over 100 genes and can effect changes in multiple cellular processes including migration, survival and differentiation. The broad nature of the response to hypoxia means that study of the HIF system is also important in cancer; where many tumour cells have found ways of subverting the HIF response to ensure their continued growth and survival. This thesis explores the role of hypoxia and the HIF system in the regulation of migration, survival and differentiation in both cancer and stem cells. The first experimental chapter examines the role of hypoxia and the HIF system in the regulation of migration and three-dimensional organisation in several cancer cell lines. Using biochemical and functional assays, the HIF system is shown to exert a pleiotropic effect across a panel of cancer cell lines. In particular, HIF 1α is shown to activate proliferation in a prostate cancer cell line in findings that may be useful to inform future clinical strategies for the management of this disease. In the second experimental chapter, the first epigenetic mechanism involving histone modification for the specific regulation of HIF 2α expression is characterised. Here the family with sequence similarity 60, member A (Fam60a) protein is shown to repress expression of the HIF 2α gene through its association with the class 1 Sin3-HDAC co-repressor complex, achieving specificity by co-operation with the SP1 transcription factor. This novel mechanism is demonstrated to be important in the regulation of the basal expression of HIF 2α. Modification of HIF 2α expression through this mechanism is shown to alter cell migration, three dimensional organisation and angiogenesis in vitro. The clinical importance of these findings is demonstrated in a series of 45 patients suffering from colorectal cancer of known stage. In this cohort, the reciprocal relationship between Fam60a and HIF 2α is maintained, and both are identified as potential novel biomarkers for the development of this disease. In the final experimental chapter, the role of hypoxia in the regulation of differentiation is explored. These effects are documented in mesenchymal progenitors primarily derived from human fat. Here, hypoxia is shown to regulate differentiation in a context-dependent manner, promoting osteogenic and retarding adipose and neural differentiation in-vitro. The roles of Fam60a and HIF 2α are explored in this system. These data may be useful in optimising future surgical engraftment of these cells for regenerative purposes.
4

Efeito da hipóxia aguda e intermitente sobre a função endotelial: implicações mecanísticas para a vasculopatia associada à Síndrome da Apnéia do Sono / Effect of acute intermitent hypoxia on the endothelial function: mechanistic implications to the vasculopathy in sleep apnea syndrome

Almeida, Germana Porto Linhares 22 January 2008 (has links)
O escopo dete trabalho é verificar a influência de episódios agudos de hipoxemia e subsequente reoxigenação sobre marcadores inflamatórios e sobre sinalizadores de integridade da função endotelial. / The aim of this study is to verify the effect of acute hipoxemia and subsequente reoxigenation over inflammatory markers and indicators of integrity of the endothelial function.
5

A study of drug resistance mechanism in human carcinoma cells after hypoxia exposure.

January 2008 (has links)
Choi, Siu Cheong. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 132-148). / Abstracts in English and Chinese. / Acknowledgement --- p.i / Abstract --- p.ii / Abbreviation --- p.v / List of Figures --- p.viii / List of Tables --- p.xii / Table of Content --- p.xiii / Chapter Chapter 1: --- General Introduction / Chapter 1.1 --- Introduction --- p.1 / Chapter 1.1.1 --- Treatment resistance in cancer --- p.1 / Chapter 1.1.1.1 --- Surgery --- p.2 / Chapter 1.1.1.2 --- Chemotherapy --- p.3 / Chapter 1.1.1.3 --- Radiotherapy --- p.3 / Chapter 1.1.1.4 --- Hormonal therapy --- p.4 / Chapter 1.1.2 --- Hypoxia/reoxygenation and its correlation with treatment resistance --- p.5 / Chapter 1.1.3 --- Aim of the study --- p.6 / Chapter Chapter 2: --- The drug sensitivity in HepG2 cells and A431 cells / Chapter 2.1 --- Introduction --- p.8 / Chapter 2.1.1 --- Treatment of cancer --- p.8 / Chapter 2.1.2 --- Drug resistance --- p.9 / Chapter 2.2 --- Materials and Methods --- p.10 / Chapter 2.2.1 --- Cell culture --- p.10 / Chapter 2.2.2 --- Drugs --- p.10 / Chapter 2.2.3 --- MTT assay --- p.11 / Chapter 2.3 --- Results --- p.12 / Chapter 2.3.1 --- The drugs to which G10HR and G20HR cells were more resistant --- p.12 / Chapter 2.3.2 --- "The drugs of which GP, G10HR and G20HR cells have similar response" --- p.12 / Chapter 2.3.3 --- The drugs to which A10HR and A20HR cells were more resistant --- p.17 / Chapter 2.3.4 --- The drugs to which A10HR and/or A20HR cells were more sensitive --- p.17 / Chapter 2.3.5 --- "The drugs which AP, A10HR and A20HR cells have similar response" --- p.18 / Chapter 2.4 --- Discussion --- p.24 / Chapter 2.4.1 --- Camptothecin and 10-hydroxy camptothecin --- p.27 / Chapter 2.4.2 --- Etoposide --- p.30 / Chapter 2.4.3 --- Hydrogen peroxide --- p.32 / Chapter 2.4.4 --- Interferons --- p.32 / Chapter 2.4.4.1 --- Interferon alpha --- p.33 / Chapter 2.4.4.2 --- Interferon gamma --- p.34 / Chapter 2.4.5 --- Methotrexate --- p.35 / Chapter 2.4.6 --- Vincristine --- p.36 / Chapter Chapter 3: --- The resistance mechanism of doxorubicin in A431 cells / Chapter 3.1 --- Introduction --- p.38 / Chapter 3.1.1 --- Chemotherapeutic resistance --- p.38 / Chapter 3.1.2 --- Tumor hypoxia --- p.39 / Chapter 3.1.3 --- Structure and function of doxorubicin --- p.39 / Chapter 3.1.4 --- Clinical use of doxorubicin --- p.40 / Chapter 3.1.5 --- Mechanisms of doxorubicin resistance --- p.41 / Chapter 3.1.6 --- Structure and function of P-glycoprotein --- p.42 / Chapter 3.1.7 --- Drug resistance contributed by P-glycoprotein and the solution --- p.43 / Chapter 3.1.8 --- Epigenetic modulation of mdr1 --- p.45 / Chapter 3.2 --- Materials and Methods --- p.47 / Chapter 3.2.1 --- Cell culture --- p.47 / Chapter 3.2.2 --- MTT assay --- p.47 / Chapter 3.2.3 --- Reverse transcription polymerase chain reaction (RT-PCR) --- p.47 / Chapter 3.2.4 --- Western blot analysis --- p.48 / Chapter 3.2.5 --- Doxorubicin efflux assay --- p.50 / Chapter 3.2.6 --- Drug sensitivity of A431 cells treated with verapamil --- p.50 / Chapter 3.2.7 --- Treatment with DNA methyltransferase inhibitor --- p.51 / Chapter 3.2.8 --- Drug sensitivity of A431 cells treated with 5-Aza-dC --- p.51 / Chapter 3.2.9 --- Methylation-specific PCR (MSP) --- p.51 / Chapter 3.2.10 --- Bisulfite genomic DNA sequencing --- p.52 / Chapter 3.3 --- Results --- p.54 / Chapter 3.3.1 --- Drug sensitivity of A431 cells to doxorubicin --- p.54 / Chapter 3.3.2 --- Expression profile of mdrl and P-glycoprotein in A431 cells --- p.54 / Chapter 3.3.3 --- Dox efflux-pump activity in A431 cells --- p.57 / Chapter 3.3.4 --- Drug sensitivity of A431 cells in the presence of verapamil --- p.59 / Chapter 3.3.5 --- Expression profile of mdrl in A431 cells in the presence of 5- Aza-dC --- p.59 / Chapter 3.3.6 --- Drug sensitivity of A431 cells in the presence of 5-Aza-dC --- p.62 / Chapter 3.3.7 --- Methylation status of mdrl promoter region --- p.64 / Chapter 3.3.8 --- Bisulfite genomic DNA sequencing of the mdrl promoter --- p.64 / Chapter 3.4 --- Discussion --- p.67 / Chapter Chapter 4: --- The resistance mechanism of cisplatin in HepG2 cells / Chapter 4.1 --- Introduction --- p.70 / Chapter 4.1.1 --- Tumor hypoxia and chemotherapeutic resistance --- p.70 / Chapter 4.1.2 --- Cisplatin and its action mechanism --- p.71 / Chapter 4.1.3 --- Mechanisms of cisplatin resistance --- p.74 / Chapter 4.1.4 --- Mismatch repair genes --- p.79 / Chapter 4.1.5 --- Epigenome and drug resistance in cancer --- p.80 / Chapter 4.2 --- Materials and Methods --- p.84 / Chapter 4.2.1 --- Cell culture --- p.84 / Chapter 4.2.2 --- MTT assay --- p.84 / Chapter 4.2.3 --- Reverse transcription polymerase chain reaction (RT-PCR) --- p.84 / Chapter 4.2.4 --- Oligonucleotide transfection --- p.85 / Chapter 4.2.5 --- Treatment with DNA methyltransferase inhibitor --- p.86 / Chapter 4.2.6 --- Drug sensitivity of HepG2 cells treated with 5-Aza-dC --- p.87 / Chapter 4.2.7 --- Treatment with histone deacetylase inhibitor --- p.87 / Chapter 4.2.8 --- Drug sensitivity of HepG2 cells treated with TSA --- p.87 / Chapter 4.3 --- Results --- p.89 / Chapter 4.3.1 --- Drug sensitivity of HepG2 cells to cisplatin --- p.89 / Chapter 4.3.2 --- Expression profile of the MMR genes in HepG2 cells --- p.89 / Chapter 4.3.3 --- Drug sensitivity of HepG2 cells to cisplatin after the knock- down of PMS2 --- p.91 / Chapter 4.3.4 --- Expression profile of MMR genes in the presence of 5-Aza-dC --- p.95 / Chapter 4.3.5 --- Drug sensitivity of HepG2 cells to cisplatin after the addition of 5-Aza-dC --- p.95 / Chapter 4.3.6 --- Expression profile of MMR genes in the presence of trichostatin A --- p.98 / Chapter 4.3.7 --- Sensitivity of HepG2 cells to cisplatin after the addition of trichostatin A --- p.98 / Chapter 4.4 --- Discussion --- p.101 / Chapter Chapter 5: --- The role of PMS2 in cisplatin-induced apoptosis / Chapter 5.1 --- Introduction --- p.105 / Chapter 5.1.1 --- Apoptosis --- p.105 / Chapter 5.1.2 --- Extrinsic pathway of apoptosis --- p.106 / Chapter 5.1.3 --- Intrinsic pathway of apoptosis --- p.106 / Chapter 5.1.4 --- Cisplatin-induced apoptosis --- p.107 / Chapter 5.1.5 --- MMR and apoptosis --- p.109 / Chapter 5.2 --- Materials and Methods --- p.111 / Chapter 5.2.1 --- Cell culture --- p.111 / Chapter 5.2.2 --- Flow cytometric analysis of apoptosis --- p.111 / Chapter 5.2.3 --- Oligonucleotide transfection --- p.111 / Chapter 5.2.4 --- Western blot analysis --- p.111 / Chapter 5.2.5 --- Drug and antibodies --- p.112 / Chapter 5.3 --- Results --- p.113 / Chapter 5.3.1 --- Cisplatin induced apoptosis --- p.113 / Chapter 5.3.2 --- Knockdown of PMS2 by siRNA --- p.113 / Chapter 5.3.3 --- Cisplatin-induced apoptosis involved caspases --- p.115 / Chapter 5.3.4 --- Protein expressions of anti-apoptotic genes --- p.119 / Chapter 5.3.5 --- Protein expressions of pro-apoptotic genes --- p.119 / Chapter 5.3.6 --- Protein expressions of apoptotic proteins after knockdown of PMS2 --- p.122 / Chapter 5.4 --- Discussion --- p.124 / Chapter Chapter 6: --- General discussion and conclusion / Chapter 6.1 --- Diverse sensitivity for hypoxia/reoxygenation treated cells to anticancer drugs --- p.128 / Chapter 6.2 --- Resistance mechanism of doxorubicin in A10HR and A20HR cells --- p.129 / Chapter 6.3 --- Resistance mechanism of cisplatin in G10HR and G20HR cells --- p.129 / Chapter 6.4 --- The role of PMS2 as a direct signaling molecule and the alteration of apoptotic proteins in cisplatin-induced apoptosis --- p.130 / Chapter 6.5 --- Future work --- p.131 / References --- p.132
6

Nitrite conversion to nitric oxide biological mechaisms and therapeutic implications /

Isbell, T. Scott January 2007 (has links) (PDF)
Thesis (Ph.D.)--University of Alabama at Birmingham, 2007. / Title from PDF title page (viewed on Feb. 4, 2010). Includes bibliographical references (p. 120-131).
7

Hypoxia inducible factor 1a : molecular mechanisms of regulation /

Wilson, William J., January 2002 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2002. / Härtill 4 uppsatser.
8

Studies on cell injury induced by hypoxia-reoxygenation and oxidized low density lipoprotein : with special reference to the protectiove effect of mixed tocopherols, omega-3 fatty acids and transforming growth factor-beta1 /

Chen, Hongjiang, January 2003 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2003. / Härtill 5 uppsatser.
9

The protective role of transglutaminase 2 in ischemic stroke

Filiano, Anthony J. January 2009 (has links) (PDF)
Thesis (Ph.D.)--University of Alabama at Birmingham, 2009. / Title from PDF title page (viewed on Sept. 4, 2009). Includes bibliographical references.
10

Regulation of GABA[subscript]A receptors by protein kinase C and hypoxia in human NT2-N neurons

Gao, Lei. January 2005 (has links)
Thesis (Ph.D.)--Medical University of Ohio, 2005. / "In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Medical Sciences." Major advisor: L. John Greenfield, Jr. Includes abstract. Document formatted into pages: iv, 208 p. Title from title page of PDF document. Bibliography: pages 55-62,94-99,137-143,166-206.

Page generated in 0.0529 seconds