• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Material characterisation, phase transitions, electrochemical properties and possible fuel cell applications of Nd₂₋ₓPrₓCuO₄ and Nd2-x-y LayPrₓCuO₄ systems

Patabendige, Chami N. K. January 2012 (has links)
The well-known lanthanide cuprates exist in two principal forms, T and T´, which behave as p-type and n-type conductors, respectively. In order to understand the structural properties and crystal chemistry from the T to T´ phase, the Nd₁.₈₋ₓLaₓPr₀.₂CuO₄ (NLPCO) system was studied varying the La substitution ratio (0≤x≤1.8) and then characterised using high temperature X-ray powder diffraction. From analysis of the X-ray diffraction patterns obtained at room temperature, there are clearly five distinguishable regions for the NLPCO system. They are, (1) monophasic T´ solid–solution (2) two phase mixture T´ + T´´ (3) monophasic T´´solid–solution (4) two phase mixture T´´ + O and finally (5) monophasic O phase solid–solution. The T´´ form has previously been suggested as an ordered form of T´; however here we show via high temperature X-ray diffraction studies that it is a non-transformable metastable phase formed on quenching of the T phase via an orthorhombically distorted variant. Also neutron diffraction and selected area electron diffraction (SAED) studies confirmed that the T ´´phase is 4- fold Cu coordinated. The structural, magnetic and electrical properties of this NLPCO series have been investigated for the selected compositions using X-ray diffraction, magnetization measurements, thermal analysis and conductivity measurements. The aim of the second half of this work was to discover the basic high temperature electrical characteristics of Nd₂₋ₓPrₓCuO₄ and investigate how this matches with those required for components on the SOFC cathode side to identify which dopant level shows highest conductivity and whether it is stable at different temperatures. The idea was to make a new concept in SOFC cathodes and current collector development, using n-type conductors instead of p- type conductors and to try to produce a high conductivity material which is stable under the chemical and thermal stresses that exist while under load that can be used in cathode or current collector applications. The Nd₂₋ₓPrₓCuO₄ (NPCO) series has been studied over a range of dopant levels (x=0.15 - 0.25) and maximum conductivity of 86.7 Scm⁻¹ has been obtained for the composition where x = 0.25. Also NPCO shows n-type semiconductor behaviour which gives operational advantages when operating at mild oxygen deficiency. AC impedance studies have been carried out on symmetrical cells to investigate the performance of NPCO as a cathode material. These studies mainly focused on polarization resistance and the activation energies of the cells. Low Rp values and low activation energies are obtained for a composite cathode compared to pure cathode material. Two configurations of NPCO as cathode materials were tested, pre-fired and in-siu fired. Pre-fired NPCO exhibited better performance than in-situ fired NPCO. Both in-situ and pre-fired current collecting NPCO still showed lowest activation energies which suggest good catalytic activity. From all of these studies, it is evident that the praseodymium doped neodymium cuprate material shows considerable promise as a potential cathode material for solid oxide fuel cell applications.
2

Intégration de matériaux oxydes innovants dans une cellule IT-SOFC / Integration of innovative oxide materials in an IT-SOFC

Morandi, Anne 04 April 2013 (has links)
Cette thèse vise à évaluer le potentiel d'un nouveau couple cathode / électrolyte pour une application en IT-SOFC (700°C), par le biais de l’élaboration et du test de cellules à anode support de configuration planaire. Les matériaux concernés sont l'électrolyte BaIn0.3Ti0.7O2.85 (BIT07), de structure perovskite, et les nickelates de terres rares Ln2-xNiO4+ (LnN, Ln = La, Nd, Pr) en tant que cathodes ; ces matériaux ont montré des propriétés prometteuses dans des travaux préliminaires effectués à l'IMN et l'ICMCB. La première partie de cette thèse porte sur la mise en place d'un protocole d'élaboration de cellules complètes utilisant des techniques bas coûts et industrialisables (cellules de taille 3 x 3 cm2) : l’anode Ni / BIT07 a été élaborée par coulage en bande, l'électrolyte BIT07 par vacuum slip casting et les cathodes par sérigraphie. Les mesures électrochimiques réalisées sur une première génération de cellules ont mis en évidence la nécessité d'ajouter une couche barrière de GDC entre les cathodes LnN et l'électrolyte BIT07. Les meilleures performances ont été obtenues pour une cellule BIT07 / Ni | BIT07 | GDC | PrN, avec une densité de puissance à 700°C et 0.7 V de 176 mW cm-2 pour une faible résistance de polarisation de 0. 29 Ω cm2. La principale limitation des performances a été identifiée comme étant la résistance interne du banc de test, donnant lieu à des valeurs de résistances séries anormalement élevées. Cette cellule a été opérée avec succès durant plus de 500 heures sous courant, avec néanmoins une vitesse de dégradation extrapolée élevée de l’ordre de 27% / kh. / This thesis aimed at assessing the potential of a novel cathode / electrolyte couple for IT-SOFC applications (700°C), through the elaboration and testing of planar anode-supported cells. The materials involved were the perovskite-structured BaIn0.3Ti0.7O2.85 (BIT07) electrolyte and the rare earth nickelate Ln2-xNiO4+ (LnN, Ln = La, Nd, Pr) cathodes, both materials having shown promising properties in preliminary work done at the IMN and the ICMCB. The first part of this thesis concerned the implementation of a cell elaboration protocol using low-cost and scalable shaping techniques (cell size 3 x 3 cm2); namely, the Ni / BIT07 anodes were elaborated by tape casting, the BIT07 electrolyte by vacuum slip casting and the cathodes by screen printing. Comparison of electrochemical results for a first and second generation of cells highlighted the usefulness of adding a GDC buffer layer in between the LnN cathodes and the BIT07 electrolyte. The best performance has been obtained for a cell BIT07 / Ni | BIT07 | GDC | PrN, with a power density at 700°C and 0.7 V of 176 mW cm-2 for a competitive polarisation resistance of 0.29 Ω cm2. The main limitation of the performance has been determined to be related to the internal resistance of the test setup, giving anomalously high series resistances. This cell has been successfully operated beyond 500 hours under current, although with a fairly high extrapolated degradation rate of 27% / kh.

Page generated in 0.0846 seconds