• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cardiomyocyte cell-cell junctions in development, disease and injury

Maqsood, Sana Abrar January 2017 (has links)
Introduction: Cardiac cell-cell junctions play important roles in maintaining cardiac integrity linking single cardiomyocytes into a single functioning syncytium. There are three main types of cell junctions in the heart: gap junctions (GJ), desmosomes (D) and adherens junctions (AJ). Mutations in the proteins which make-up these junctions are known to cause arrhythmogenic right ventricular cardiomyopathy (ARVC). Pathological features include progressive replacement of right ventricular cardiac muscle with fibrofatty tissue. This can lead to heart failure and life threatening arrhythmias. During normal development of the mammalian heart, protein components of AJ and D gradually fuse to form composite junctions at the intercalated discs, also called areae compositae (singular, area composita, AC). In contrast, the adult heart of lower vertebrates, including the zebrafish, may have few or no AC type junctions. The detailed structure of cardiomyocyte cell-cell junctions in the adult zebrafish heart remain poorly defined and their role in normal development, growth and response to injury have yet to be studied. This thesis will examine the hypothesis that localisation and distribution of myocardial cell-cell junction proteins are crucial in normal myocardial development and in endogenous cardiac regeneration and repair following injury. This will be achieved by understanding the normal development of cell-cell junction proteins in zebrafish from embryonic to adulthood. These findings will then be analysed in comparison to cell-cell junction proteins localisation and distribution in early and late mammalian (mouse and human) myocardium. Once a normal pattern of cell-cell junction proteins will be established, the localisation of cell-cell junction proteins in plakologbin mutant zebrafish model for cardiomyopathy will be studied to understand the distribution and localisation of these proteins in disease manifestation. This model will then be used to test if localisation of cell-cell junction proteins plays an important in cardiac repair following injury by using embryonic laser injury model, this will be further tested by drug intervention study to investigate underlying pathways such as Wnt signalling pathway. Methods: Myocardial cell-cell junctions were assessed using immunohistochemistry in embryonic, juvenile and adult zebrafish hearts and in foetal and adult human hearts. The Plakoglobin mutant zebrafish line (UAS:Gal-4:Plakoglobin Naxos; named as PGNx) was characterised using various functional and morphological assessments including histology, echocardiography and MRI scanning. Similar studies were undertaken in PGNx mutants at different developmental stages. A pharmacological intervention study, using a GSK-3 inhibitor, was carried out in PGNx mutants followed by cardiac structural and functional assessments. Laser-induced cardiac trauma was used to assess the response to injury and repair in normal and PGNx embryos following treatment with the GSK3 inhibitor drug. Results: Cell-cell junction patterning in the embryonic, juvenile and adult zebrafish heart shows a characteristic pearl string appearance of desmoplakin and β-catenin labelled distinct disc shaped AJ. Human foetal heart showed small distinct D and AJ, while the adult human heart had features consistent with AC type junctions. PGNx fish showed reduced ventricle ejection fraction, dilatation of the atrium, reduced amplitude of wall motion and ventricle relaxation velocity compared to age-matched controls. Echocardiography and MRI imaging confirmed severe atrial dilatation and restrictive ventricle physiology in adult fish. The cell-cell junction proteins were over-expressed in the zebrafish PG mutant (PGNx) hearts compared to age-matched controls. Drug studies using a GSK-3β inhibitor showed complete recovery of cardiac function and partial recovery of heart structure. Cardiac injury studies, using laser, showed failure of repair in PGNx embryos compared to age-matched controls. The GSK3 inhibitor failed to improve the functional response following heart laser injury. Conclusions: Cell-cell junctions are distributed abundantly around cardiomyocytes in the zebrafish heart during early development and into adulthood. In contrast to previous studies in adult mammalian heart, there was no evidence of AC type junctions in adult zebrafish cardiomyocytes. The mutant zebrafish line showed restrictive cardiac physiology and abnormal cardiac structure confirming the key role played by plakoglobin in the normal heart development. This is further supported by evidence showing failure of repair in PGNx mutant embryos after injury. Drug treatment with a GSK-3 inhibitor highlights a potentially novel therapeutic pathway for treatment of ARVC involving Wnt signalling.
2

The Sertoli Cell-Spermatid Junctional Complex: A potential avenue for Male contraception

Wolski, Katja Margrit 01 June 2006 (has links)
The Sertoli cell ectoplasmic specialization is a specialized domain of the calcium-dependent Sertoli-spermatid adherens junction. Structurally abnormal or absent Sertoli ectoplasmic specializations are associated with spermatid sloughing and subsequent oligospermia in conditions associated with reduced fertility potential, although the junctional strength between these cells is not known. Adjudin is a potential male contraceptive agent thought to interrupt testicular binding dynamics of adherens junctions, resulting in controlled spermatid sloughing.It was hypothesized that the mechanism of action of Adjudin, pertinent to its putative contraceptive effect, is the disruption of the Sertoli cell-spermatid junction. This was tested in vitro using primary isolates of germ cells and both primary and immortal Sertoli cells.This dissertation presents the examination of Sertoli-germ cell interactions in three parts, which address the overall aims of this dissertation project: (1) measurement of the junctional strength between Sertoli cells and spermatids in vitro, (2) determination of the efficacy of sk Sertoli cell lines in Sertoli-germ cell binding studies in vitro, and (3) assessment of Adjudin as a potential male contraceptive, by measuring the junctional binding strength between Sertoli cells and spermatids exposed to this chemical in vitro.For the first time, the strength of the Sertoli-spermatid junction has been measured, using a micropipette pressure transducing system (MPTS). Results reported in this dissertation demonstrate that the junctional strength between Sertoli cells and germ cells can be measured in vitro, support long held speculations regarding Sertoli-spermatid junctional interactions, and provide a technology to test proposed mechanisms of junctional binding dynamics between cells of the seminiferous epithelium (Chapter 2). Although the sk cell lines initially expressed mRNA for the FSH receptor, coculture results determined that these cell lines have limited value for investigating Sertoli-germ cell binding dynamics in vitro (Chapter 3). By utilizing the MPTS and primary cell isolates, Adjudin was determined to reduce the junctional strength between Sertoli cells and step-8 spermatids. In conclusion, results support the use of Adjudin as a potential reversible male contraceptive agent by a mechanism which alters the adhesion properties between the step-8 spermatid and the Sertoli cell (Chapter 4).
3

Study of the kinase MAP4K4 in collective migration of cancer cells

Alberici Delsin, Lara Elis 08 1900 (has links)
La migration cellulaire collective est essentielle aux processus physiologiques, tels que le dé-veloppement et la réparation des tissus, et aux conditions pathogènes, telles que les métas-tases cancéreuses. Les lésions métastatiques sont à l'origine de la majorité de la mortalité liée au cancer, ce qui incite à comprendre les mécanismes moléculaires régissant la migration collective du cancer et à explorer leur potentiel thérapeutique. Dans ce contexte, la kinase MAP4K4 est apparue comme une kinase pro-métastatique, associée à un mauvais pronostic pour les patients et reconnue pour réguler la migration des cellules cancéreuses. Cependant, son rôle dans la migration collective reste flou. Au cours des dernières années, le groupe de recherche du Dr Emery a dévoilé que Misshapen, l'orthologue drosophile de MAP4K4, est un régulateur central de la migration collective des cellules de bordure, soulevant la question de savoir si MAP4K4 coordonnerait la migration collective des cellules cancéreuses. Le but de cette thèse était d’évaluer la fonction de MAP4K4 dans la migration collective des cellules cancéreuses, incluant deux modes de migration différents : en grappe et en feuillets. En utilisant la lignée cellulaire A431, nous démontrons le rôle de MAP4K4 dans la régulation de la dynamique de protrusion, de rétraction et d’adhésion focale, favorisant la migration des grappes grâce à la régulation des forces de traction cellule-substrat. De plus, nous dévoi-lons un nouveau rôle de MAP4K4 dans l’adhésion cellule-cellule, en contrôlant la charge de tension et la stabilité, et en ajustant les contraintes intercellulaires. Notamment, lors de la migration des feuillets, les cellules A431 forment des structures en forme de doigts, avec une hiérarchie leader-suiveur. En caractérisant ces structures migratrices, nous avons identifié des structures d'actomyosine supracellulaires, ouvrant ainsi de nouvelles questions et voies d'investigation pour explorer les mécanismes de communication cellule-cellule. De plus, nous avons montré que MAP4K4 régule la formation des doigts et la densité des câbles supracellu-laires, nuisant à l'émergence de cellules leader et coordonnant la communication cellule-cellule. Dans l’ensemble, ces travaux soulignent le rôle central de MAP4K4 dans la régulation de la migration collective des cellules cancéreuses par l’adhésion focale et la modulation de la jonction cellule-cellule, ayant finalement un impact sur la génération et la transmission de la force cellulaire, coordonnant ainsi le mouvement collectif. En outre, nous discutons du po-tentiel de l’inhibition de MAP4K4 en tant que stratégie de traitement des métastases. / Collective cell migration is essential for both physiological processes, such as development and tissue repair, and pathogenic conditions, such as cancer metastasis. Metastatic lesions drive the majority of cancer-related mortality, urging the understanding of molecular me-chanisms governing collective cancer migration, and exploring their therapeutic potential. In this context, the kinase MAP4K4 has emerged as a pro-metastatic kinase, associated with poor patient prognosis and recognized for regulating cancer cell migration. However, its role in collective migration remains unclear. In the past years, Dr. Emery's research group unveiled that Misshapen, the MAP4K4 Drosophila orthologue, is a central regulator of border cell col-lective migration, raising the question whether MAP4K4 would coordinate the collective mi-gration of cancer cells. The purpose of this thesis was to assess the function of MAP4K4 in carcinoma cell’s collective migration, including two different migration modes : clusters and sheets. Using A431 cell line, we demonstrate MAP4K4’s role in regulating protrusion, retraction and focal adhesion dy-namics, promoting cluster migration through regulating cell-substrate traction forces. Furthermore, we unveil a new role of MAP4K4 at cell-cell adhesions, controlling tension loa-ding and stability, and tunning the intercellular stresses. Notably, during sheet migration, A431 cells form finger-like structures, with a leader-follower hierarchy. Performing the charac-terization of these migrating structures, we identified supracellular actomyosin structures, opening new questions and investigative pathways to explore cell-cell communication me-chanisms. Moreover, we showed that MAP4K4 regulates finger formation and the density of the supracellular cables, impairing the emergence of leader cells and coordinating cell-cell communication. Overall, this work underscores the central role of MAP4K4 in regulating collective cancer cell migration through focal adhesion and cell-cell junction modulation, ultimately impacting cell force generation and transmission, coordinating collective movement. Furthermore, we dis-cuss the potential of MAP4K4 inhibition as a strategy for metastasis therapy.
4

Effects of Shear Stress on the Distribution of Kindlins in Endothelial Cells

Jones, Sidney V. 29 May 2014 (has links)
No description available.

Page generated in 0.0839 seconds