• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 161
  • 161
  • 161
  • 86
  • 60
  • 59
  • 55
  • 26
  • 23
  • 22
  • 22
  • 21
  • 20
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Inebriated Immunity: Alcohol Affects Innate Immune Signaling in the Gut-Liver-Brain Axis

Lowe, Patrick P. 18 July 2018 (has links)
Alcohol is a commonly consumed beverage, a drug of abuse and an important molecule affecting nearly every organ-system in the body. This project seeks to investigate the interplay between alcohol’s effects on critical organ-systems making up gut-liver-brain axis. Alcohol initially interacts with the gastrointestinal tract. Our research describes the alterations seen in intestinal microbiota following alcohol consumption in an acute-on-chronic model of alcoholic hepatitis and indicates that reducing intestinal bacteria using antibiotics protects from alcohol-induced intestinal cytokine expression, alcoholic liver disease and from inflammation in the brain. Alcohol-induced liver injury can occur due to direct hepatocyte metabolic dysregulation and from leakage of bacterial products from the intestine that initiates an immune response. Here, we will highlight the importance of this immune response, focusing on the role of infiltrating immune cells in human patients with alcoholic hepatitis and alcoholic cirrhosis. Using a small molecule inhibitor of CCR2/CCR5 chemokine receptor signaling in mice, we can protect the liver from damage and alcohol-induced inflammation. In the brain, we observe that chronic alcohol leads to the infiltration of macrophages in a region-specific manner. CCR2/CCR5 inhibition reduced macrophage infiltration, alcohol-induced inflammation and microglial changes. We also report that chronic alcohol shifts excitatory/inhibitory synapses in the hippocampus, possibly through complement-mediated remodeling. Finally, we show that anti-inflammasome inhibitors altered behavior by reducing alcohol consumption in female mice. Together, these data advance our understanding of the gut-liver-brain axis in alcoholism and suggest novel avenues of therapeutic intervention to inhibit organ pathology associated with alcohol consumption and reduce drinking.
122

IRF4 Does the Balancing Act: A Dissertation

Nayar, Ribhu 07 January 2015 (has links)
CD8+ T cell differentiation is a complex process that requires integration of signals from the TCR, co-stimulatory molecules and cytokines. Ligation of the peptide-MHC complex with the cognate TCR initiates a downstream signaling cascade of which the IL-2 inducible T-cell kinase (ITK) is a key component. Loss of ITK results in a measured reduction in T cell activation. Consequently, Itk deficient mice have defects in thymic selection, CD8+ T cell expansion and differentiation in response to virus infections, and generate a unique population of innate-like CD8+ T cells. The mechanisms that translate TCR and ITK-derived signals into distinct gene transcription programs that regulate CD8+ T cell differentiation are not defined. Our microarray screen identified IRF4 as a potential transcription factor mediating the differentiation of innate-like T cells, and antiviral CD8+ T cell in response to acute and chronic LCMV infections. Innate-like CD8+ T cells are characterized by their high expression of CD44, CD122, CXCR3, and the transcription factor Eomesodermin (Eomes). One component of this altered development is a non-CD8+ T cell-intrinsic role for IL-4. We show that IRF4 expression is induced upon TCR signaling and is dependent on ITK activity. In contrast to WT cells, activation of IRF4-deficient CD8+ T cells leads to rapid and robust expression of Eomes, which is further enhanced by IL-4 stimulation. These data indicate that ITK signaling promotes IRF4 up-regulation following CD8+ T cell activation and that this signaling xii pathway normally suppresses Eomes expression, thereby regulating the differentiation pathway of CD8+ T cells. ITK deficient mice also have reduced expansion of CD8+ T cells in response to acute LCMV infections. We show that IRF4 is transiently upregulated to differing levels in murine CD8+ T cells, based on the strength of TCR signaling. In turn, IRF4 controls the magnitude of the CD8+ T cell response to acute virus infection in a dose-dependent manner. Furthermore, the expression of key transcription factors such as T cell factor 1 and Eomesodermin are highly sensitive to graded levels of IRF4. In contrast, T-bet expression is less dependent on IRF4 levels and is influenced by the nature of the infection. These data indicate that IRF4 is a key component that translates the strength of TCR signaling into a graded response of virus-specific CD8+ T cells. The data from these studies indicated a pivotal role of IRF4 in regulating the expression of T-bet and Eomes. During persistent LCMV infections, CD8+ T cells differentiate into T-bethi and Eomeshi subsets, both of which are required for efficient viral control. We show that TCR signal strength regulates the relative expression of T-bet and Eomes in antigen-specific CD8+ T cells by modulating levels of IRF4. Reduced IRF4 expression results in skewing of this ratio in favor of Eomes, leading to lower proportions and numbers of T-bet+ Eomes- precursors and poor control of LCMV Clone 13 infection. Altering this ratio in favor of T-bet xiii restores the differentiation of T-bet+ Eomes- precursors and the protective balance of T-bet to Eomes required for efficient viral control. These data highlight a critical role for IRF4 in regulating protective anti-viral CD8+ T cell responses by ensuring a balanced ratio of T-bet to Eomes, leading to the ultimate control of this chronic viral infection.
123

Activation of mTORC1 Improves Cone Cell Metabolism and Extends Vision in Retinitis Pigmentosa Mice: A Dissertation

Venkatesh, Aditya 12 April 2016 (has links)
Retinitis Pigmentosa (RP) is an inherited photoreceptor degenerative disease that leads to blindness and affects about 1 in 4000 people worldwide. The disease is predominantly caused by mutations in genes expressed exclusively in the night active rod photoreceptors; however, blindness results from the secondary loss of the day active cone photoreceptors, the mechanism of which remains elusive. Here, we show that the mammalian target of rapamycin complex 1 (mTORC1) is required to delay the progression of cone death during disease and that constitutive activation of mTORC1 is sufficient to maintain cone function and promote cone survival in RP. Activation of mTORC1 increased expression of genes that promote glucose uptake, retention and utilization, leading to increased NADPH levels; a key metabolite for cones. This protective effect was conserved in two mouse models of RP, indicating that the secondary loss of cones can be delayed by an approach that is independent of the primary mutation in rods. However, since mTORC1 is a negative regulator of autophagy, its constitutive activation led to an unwarranted secondary effect of shortage of amino acids due to incomplete digestion of autophagic cargo, which reduces the efficiency of cone survival over time. Moderate activation of mTORC1, which promotes expression of glycolytic genes, as well as maintains autophagy, provided more sustained cone survival. Together, our work addresses a long-standing question of non-autonomous cone death in RP and presents a novel, mutation-independent approach to extend vision in a disease that remains incurable.
124

Exploiting DNA Repair and ER Stress Response Pathways to Induce Apoptosis in Glioblastoma Multiforme: A Dissertation

Weatherbee, Jessica L. 05 August 2016 (has links)
Glioblastoma multiforme (GBM) is a deadly grade IV brain tumor characterized by a heterogeneous population of cells that are drug resistant, aggressive, and infiltrative. The current standard of care, which has not changed in over a decade, only provides GBM patients with 12-14 months survival post diagnosis. We asked if the addition of a novel endoplasmic reticulum (ER) stress inducing agent, JLK1486, to the standard chemotherapy, temozolomide (TMZ), which induces DNA double strand breaks (DSBs), would enhance TMZ’s efficacy. Because GBMs rely on the ER to mitigate their hypoxic environment and DNA repair to fix TMZ induced DSBs, we reasoned that DSBs occurring during heightened ER stress would be deleterious. Treatment of GBM cells with TMZ+JLK1486 decreased cell viability and increased cell death due to apoptosis. We found that TMZ+JLK1486 prolonged ER stress induction, as indicated by elevated ER stress marker BiP, ATF4, and CHOP, while sustaining activation of the DNA damage response pathway. This combination produced unresolved DNA DSBs due to RAD51 reduction, a key DNA repair factor. The combination of TMZ+JLK1486 is a potential novel therapeutic combination and suggests an inverse relationship between ER stress and DNA repair pathways.
125

Impact of Collateral Enlargement on Smooth Muscle Phenotype

Bynum, Alexander Jerome 01 December 2011 (has links) (PDF)
Peripheral Artery Disease is a very serious disease characterized by an arterial occlusion due to atherosclerotic plaques. In response to an arterial occlusion, arteriogenesis occurs, causing smooth muscle cells to transition from a contractile to synthetic state. Also following an arterial occlusion, functional impairment was seen in the collateral circuit. An immunofluorescence protocol was developed in order to assess the impact of collateral enlargement (arteriogenesis) on smooth muscle phenotype at various time points. Smooth muscle α-actin was used to mark all smooth muscle cells, Ki-67 was used to label proliferating smooth muscle cells, and a fluorescent nuclear stain was used to quantify the number of cells present. Samples of the profunda femoris and gracilis were dissected from each mouse hind limb (one ligated, one sham) at three different time points: 3 days, 7 days, and 14 days after a femoral artery ligation surgery. Smooth muscle cell phenotype and luminal cross-sectional area were assessed in the profunda femoris and the midzone of the gracilis collaterals. Smooth muscle cells were proliferating at 3 and 7 days following the occlusion in the gracilis collaterals and significant collateral vessel growth was observed over the two week period. No proliferation was observed in the profunda femoris and although there was an increasing trend in vessel size over the two week period, the averages were not significantly different. The phenotypic transition of the smooth muscle cells was not the cause of vascular impairment in the collateral circuit. This shows that further research is needed to characterize impairment in the collateral circuit.
126

Proteomic Analysis of the Crustacean Molting Gland (Y-organ) Over the Course of the Molt Cycle

Head, Talia B. 01 September 2017 (has links) (PDF)
Molting in crustaceans is a highly complex physiological process involving negative regulation by two paired endocrine glands, the X-organ/sinus gland complex (XO/SG) and the Y-organ (YO). The XO/SG complex is responsible for making molt-inhibiting hormone (MIH) which negatively regulates synthesis of the molting hormones, ecdysteroids, by the YO. Analysis of gene expression in the XOs and YOs has led to the development of a proposed molecular signaling pathway which regulates ecdysteroidogenesis and subsequent molting in crustaceans. In this study, changes in protein abundance in the YO were characterized over the course of a molt cycle (intermolt, early premolt, mid premolt, and late premolt) induced by multiple leg autotomy (MLA) in the blackback land crab, Gecarcinus lateralis. In all, 457 distinct protein spots were detected in the molting gland using two-dimensional gel electrophoresis, of which 230 (50%) changed significantly in abundance over the course of the molt cycle (one-way permutation ANOVA, p≤0.05). Changes in protein abundance were most notable between the intermolt and the three premolt stages, indicative of a biological ‘on-off’ switch in the Y-organ. Several hemolymph species proteins, including hemocyanin, cryptocyanin, and transglutaminase, were identified which characterized physiological changes associated with molting beyond the Y-organ. An abundance of cytoskeletal proteins were identified which correspond with glandular hypertrophy and are indicative of vesicular-mediated exocytosis, possibly of ecdysteroids. Further, several proteins involved in the immune, proteostasis, and oxidative stress response are characteristic of supporting the dynamic and demanding cellular changes associated with ecdysteroidogenesis and the transition of the Y-organ from the basal to the highly active state. Many proteins involved in energetic pathways including glycolysis, the citric acid cycle, amino acid metabolism, and one-carbon metabolism changed in abundance in response to both the higher energy demands and the requirement for precursors of macromolecular synthesis of the YO over the molt cycle. Taken together, these changes in diverse physiological pathways represent the complexity involved with regulation of the Y-organ, even with just the single proposed physiological purpose of ecdysteroidogenesis.
127

Rapid Method of Processing Sperm for Nucleic Acid Extraction in Clinical Research

de Gannes, Matthew K 29 August 2014 (has links) (PDF)
Background: Sperm contain highly compact nuclei, inhibiting DNA extraction using traditional techniques. Current methods extracting sperm DNA involve lengthy lysis and no means of stabilizing DNA, hindering clinical research. Objective: We sought to optimize an efficient method of extracting high quality human sperm DNA. Methods: Sperm from three volunteers were isolated using PureCeption. We tested 1) proteinase K with DNA/RNA Shield, 2) DTT and TCEP as reducing agents, 3) QIAshredder homogenization, and 4) stability of sperm DNA fresh (baseline) or after 4 weeks of storage at 4OC in DNA/RNA Shield using modified Quick-gDNA MiniPrep. DNA was PCR amplified using ALU primers and digested with Hinf1 restriction enzymes. DNA methylation was measured by MassARRAY. Results: DNA concentrations were similar with (30.1+0.28ng/μL, 33.4+0.21ng/μL) and without (28.9+0.00ng/μL, 30.9+0.85ng/μL) proteinase K. Sperm cells were lysed after 1 and 20 minutes with 25mM TCEP and 100mM DTT respectively. TCEP (50mM) produced greater DNA concentrations (17.2+0.50ng/μL, 21.3+0.71ng/μL) than 50mM DTT (12.6+0.28ng/μL, 12.3+0.35ng/μL). Adding QIAshredder to 50mM TCEP increased DNA concentrations (25.9+0.35ng/μL, 21.7+0.49ng/μL versus 18.6+0.99ng/μL, 12.3+0.35ng/μL). At baseline and 4 weeks: 1) DNA concentrations were similar (36.2+2.75 ng/μL, 32.2+1.38ng/μL, 44.3+3.93ng/μL versus 40.0+2.98ng/μL, 37.6+1.38ng/μL, 38.7+3.93ng/μL respectively) and 2) DNA was equally amplified by PCR and digested with restriction enzymes. DNA methylation was similar at baseline and 4 weeks for SNURF (1.43+1.02%, 1.55+0.95%), PEG10 (3.69+0.66%, 4.28+1.52%), and H19 (88.93+3.24%, 91.78+2.00%). Conclusions: We stabilized and isolated high quality DNA from human sperm using 5 minute versus > 2 hour lysis in other methods. Our methods may facilitate efficient clinical research.
128

Mechanisms and Mitigation of Skeletal Muscle Fatigue in Single Fibers from Older Adults

Foster, Aurora 02 July 2019 (has links) (PDF)
Skeletal muscle fatigue is the contraction-induced decline in whole muscle force or power, and can be greater in older versus young adults. Fatigue primarily results from increased metabolism elevating phosphate (Pi) and hydrogen (H+), which alters myosin-actin interactions; however, which steps of the myosin-actin cross-bridge cycle are changed and their reversibility are unclear. PURPOSE: This study sought to: 1) Examine the effects of elevated Pi and H+ on molecular and cellular function, and 2) Test the ability of deoxyadenosine triphosphate (dATP), an alternative energy to adenosine triphosphate (ATP), to reverse the contractile changes induced with high Pi and H+. METHODS: Maximal tension (force/cross-sectional area), myofilament mechanics and myosin-actin cross-bridge kinetics were measured in 214 single fibers (104 type 1) from the vastus lateralis of eight (4 men) healthy, sedentary older adults (71±1.3 years) under normal (5 mM Pi, pH 7.0), simulated fatigue (30 mM Pi, pH 6.2) and simulated fatigue with dATP conditions. RESULTS: Tension declined with high Pi and H+ in slow- (type I, 23%) and fast-contracting (type II, 28%) fibers due to fewer strongly bound myosin heads (28-48%) and slower cross-bridge kinetics (longer myosin attachment times (ton) (18-40%) and reduced rates of force production (18-30%)). Type I myofilaments became stiffer with high Pi and H+ (48%), which may have partially mitigated fatigue-induced tension reduction. Elevated Pi and H+ with dATP moderately improved force production similarly in both fiber types (8-11%) compared to high Pi and H+ with ATP. In type I fibers, high Pi and H+ with dATP returned the number of myosin heads strongly bound and ton to normal, while the rate of force production became faster than normal (16%). In type II fibers, high Pi and H+ with dATP did not change the number of myosin heads bound, but cross-bridge kinetics were 16-23% faster than normal. CONCLUSION: These results identified novel fiber-type specific changes in myosin-actin cross-bridge kinetics and myofilament stiffness that help explain fatigue-related force reduction in human single skeletal muscle fibers as well as an alternative energy source that partially to fully reverses contractile changes of elevated Pi and H+ that occur with fatigue.
129

High Affinity Block of ICl,swell by Thiol-Reactive Small Molecules

Park, Sung H 01 January 2016 (has links)
Ebselen (Ebs) is considered as a glutathione peroxidase (GPx) mimetic and primarily thought to function by scavenging intracellular reactive oxygen species (ROS). Previous to our work, Deng et al. (2010a) demonstrated complete block of ICl,swell with 15 microM Ebs following endothelin-1 (ET-1) induced activation of the current in cardiomyocytes. This block was presumed to take effect mainly via the quenching of ROS. Nonetheless, our work with DI TNC1 astrocytes strongly emphasizes that Ebs might function by an alternative mechanism based on its kinetic profile in blocking ICl,swell. Our experiments showed that 45 nM Ebs can fully block ICl,swell thus suggesting an apparent IC50 result, we predicted Ebs to possess a high kon with a low koff close to zero. As predicted, Ebs failed to washout in the timescale covered by our patch-clamp experiments. The block was also distal to H2O2, previously considered as the most proximate regulator of ICl,swell. And based on further evidence demonstrating irreversible block of ICl,swell distal to H2O2 with Ebs congeners, complete suppression of native ICl,swell with MTS reagents, and failure of Ebs to block ICl,swell from the cytosol, we concluded that Ebs and its congeners can covalently modify important –SH groups required for current activation while functioning as sulfhydryl reagents. Complete irreversible block of ICl,swell with 110 mM cell impermeant MTSES in native DI TNC1 astrocytes contrasts sharply to SWELL1 (Qiu et al., 2014) or LRRC8A (Voss et al., 2014), the latest molecular entity presumably responsible for ICl,swell, where 3.33 mM MTSES failed to demonstrate block of ICl,swell in the wild-type stably expressing SWELL1 (Qiu et al., 2014). Our data with Ebs, its congeners, and MTS reagents indicate the existence of a common extracellular binding site which involves a selenenylsulfide (Se-S) bond that critically modulates ICl,swell. We, therefore, synthesized a derivative of Ebs called ebselen-para-yne (Ebs-p-yne), which provided an even higher affinity for blocking ICl,swell with a presumed IC50 ~picomolar range. Ebs-p-yne is a promising novel molecule that may serve as a tag in identifying the molecular fingerprint ultimately responsible for ICl,swell. Furthermore, we can take advantage of click chemistry to ultimately pull out the channel or channel component which has remained elusive for greater than two decades.
130

MECHANISMS AND POTENTIAL THERAPY ON DISRUPTED BLOOD PRESSURE CIRCADIAN RHYTHM IN DIABETES

Hou, Tianfei 01 January 2018 (has links)
Arterial blood pressure (BP) undergoes a 24-hour oscillation that peaks in the active day and reaches a nadir at night during sleep in humans. Reduced nocturnal BP fall (also known as non-dipper) is the most common disruption of BP circadian rhythm and is associated with increased risk of untoward cardiovascular events and target organ injury. Up to 75% of diabetic patients are non-dippers. However, the mechanisms underlying diabetes associated non-dipping BP are largely unknown. To address this important question, we generated a novel diabetic db/db-mPer2Luc mouse model (db/db-mPer2Luc) that allows quantitatively measuring of mPER2 protein oscillation by real-time mPer2Luc bioluminescence monitoring in vitro and in vivo. Using this model, we demonstrated that the db/db-mPer2Luc mice have a diminished BP daily rhythm. The phase of the mPER2 daily oscillation is advanced to different extents in explanted peripheral tissues from the db/db-mPer2Luc mice relative to that in the control mice. However, no phase shift is found in the central oscillator, the suprachiasmatic nucleus (SCN). The results indicate that the desynchrony of mPER2 daily oscillation in the peripheral tissues contributes to the loss of BP daily oscillation in diabetes. Extensive research over the past decades has been focused on how the components of food (what we eat) and the amount of food (how much we eat) affect metabolic diseases. Only recently has it become appreciated that the timing of food intake (when we eat), independent of total caloric and macronutrient quality, is also critical for metabolic health. To investigate the potential effect of the timing of food intake on the BP circadian rhythm, we simultaneously monitored the BP and food intake profiles in the diabetic db/db and control mice using radiotelemetry and BioDAQ systems. We found the loss of BP daily rhythm is associated with disrupted food intake rhythm in the db/db mice. In addition, the normal BP daily rhythm is altered in the healthy mice with abnormal feeding pattern, in which the food is available only during the inactive-phase. To explore whether imposing a normal food intake pattern is able to prevent and restore the disruption of BP circadian rhythm, we conducted active-time restricted feeding (ATRF) in the db/db mice. Strikingly, ATRF completely prevents and restorers the disrupted BP daily rhythm in the db/db mice. While multiple mechanisms likely contribute to the protection of ATRF on the BP daily rhythm, we found that ATRF improves the rhythms of energy metabolism, sleep-wake cycle, BP-regulatory hormones and autonomic nervous system (ANS) in the db/db mice. To further investigate the molecular mechanism by which ATRF regulates BP circadian rhythm, we determined the effect of ATRF on the mRNA expressions of core clock genes and clock target genes in the db/db mice. Of particular interest is that we found among all the genes we examined, the mRNA oscillation of Bmal1, a key core clock gene, is disrupted by diabetes and selectively restored by the ATRF in multiple peripheral tissues in the db/db mice. More importantly, we demonstrated that Bmal1 is partially required for ATRF to protect the BP circadian rhythm. In summary, our findings indicate that the desynchrony of peripheral clocks contributes to the abnormal BP circadian pattern in diabetes. Moreover, our studies suggest ATRF as a novel and effective chronotherapy against the disruption of BP circadian rhythm in diabetes.

Page generated in 0.139 seconds