• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 161
  • 161
  • 161
  • 86
  • 60
  • 59
  • 55
  • 26
  • 23
  • 22
  • 22
  • 21
  • 20
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Elucidating the Molecular Mechanism of CYLD-Mediated Necrosis: A Dissertation

Moquin, David M. 13 May 2013 (has links)
TNFα-induced programmed necrosis is a caspase-independent cell death program that is contingent upon the formation of a multiprotein complex termed the necrosome. The association of two of the components of the necrosome, receptor interacting protein 1 (RIP1) and RIP3, is a critical and signature molecular event during necrosis. Within this complex, both RIP1 and RIP3 are phosphorylated which are consequential for transmission of the pro-necrotic signal. Namely, it has been demonstrated that RIP3 phosphorylation is required for binding to downstream substrates. Nevertheless, the regulatory mechanisms governing necrosome activation remain unclear. Since necrosis is implicated in a variety of different diseases, understanding the biochemical signaling pathway can potentially yield future drug targets. I was interested in identifying other regulators of necrosis in hope of gaining a better understanding of the necrosis signaling pathway and regulators of the necrosome. To address this, I screened a cancer gene siRNA library in a cell line sensitive to necrosis. From this, I independently identified CYLD as a positive regulator of necrosis. Previous studies suggest that deubiquitination of RIP1 in the TNF receptor (TNFR)-1 signaling complex is a prerequisite for transition of RIP1 into the cytosol and assembly of the RIP1-RIP3 necrosome. The deubiquitinase cylindromatosis (CYLD) is presumed to promote programmed necrosis by facilitating RIP1 deubiquitination in this membrane receptor complex. Surprisingly, I found that TNFα could induce RIP1-dependent necrosis in CYLD-/- cells. I show that CYLD does not regulate RIP1 ubiquitination at the receptor complex. Strikingly, assembly of the RIP1-RIP3 necrosome was delayed, but not abolished in the absence of CYLD. In addition to the TNFR-1 complex, I found that RIP1 within the necrosome was also ubiquitinated. In the absence of CYLD, RIP1 ubiquitination in the NP-40 insoluble necrosome was greatly increased. Increased RIP1 ubiquitination correlated with impaired RIP1 and RIP3 phosphorylation, a signature of kinase activation. My results show that CYLD regulates RIP1 ubiquitination in the NP-40 insoluble necrosome, but not in the TNFR-1 signaling complex. Contrary to the current model, CYLD is not essential for necrosome assembly. Rather, it facilitates RIP1 and RIP3 activation within the necrosome and the corollary is enhancement of necrosome functionality and subsequent necrosis. My results therefore indicate that CYLD exerts its pro-necrotic function in the NP-40 insoluble necrosome, and illuminates the mechanism of necrosome activation.
112

POS-1 Regulation of Endo-mesoderm Identity in C. elegans: A Dissertation

Elewa, Ahmed M. 29 April 2014 (has links)
How do embryos develop with such poise from a single zygote to multiple cells with different identities, and yet survive? At the four-cell stage of the C. elegans embryo, only the blastomere EMS adopts the endo-mesoderm identity. This fate requires SKN-1, the master regulator of endoderm and mesoderm differentiation. However, in the absence of the RNA binding protein POS-1, EMS fails to fulfill its fate despite the presence of SKN-1. pos-1(-) embryos die gutless. Conversely, the RNA binding protein MEX-5 prevents ectoderm blastomeres from adopting the endo-mesoderm identity by repressing SKN-1. mex-5(-) embryos die with excess muscle at the expense of skin and neurons. Through forward and reverse genetics, I found that genes gld-3/Bicaudal C, cytoplasmic adenylase gld-2, cye-1/Cyclin E, glp-1/Notch and the novel gene neg-1 are suppressors that restore gut development despite the absence of pos-1. Both POS-1 and MEX-5 bind the 3’UTR of neg-1 mRNA and its poly(A) tail requires GLD-3/2 for elongation. Moreover, neg-1 requires MEX-5 for its expression in anterior ectoderm blastomeres and is repressed in EMS by POS-1. Most neg-1(-) embryos die with defects in anterior ectoderm development where the mesoderm transcription factor pha-4 becomes ectopically expressed. This lethality is reduced by the concomitant loss of med- 1, a key mesoderm-promoting transcription factor. Thus the endo-mesoderm identity of EMS is determined by the presence of SKN- 1 and the POS-1 repression of neg-1, whose expression is promoted by MEX-5. Together they promote the anterior ectoderm identity by repressing mesoderm differentiation. Such checks and balances ensure the vital plurality of cellular identity without the lethal tyranny of a single fate.
113

Analyses of All Possible Point Mutations within a Protein Reveals Relationships between Function and Experimental Fitness: A Dissertation

Roscoe, Benjamin P. 25 March 2014 (has links)
The primary amino acid sequence of a protein governs its specific cellular functions. Since the cracking of the genetic code in the late 1950’s, it has been possible to predict the amino acid sequence of a given protein from the DNA sequence of a gene. Nevertheless, the ability to predict a protein’s function from its primary sequence remains a great challenge in biology. In order to address this problem, we combined recent advances in next generation sequencing technologies with systematic mutagenesis strategies to assess the function of thousands of protein variants in a single experiment. Using this strategy, my dissertation describes the effects of most possible single point mutants in the multifunctional Ubiquitin protein in yeast. The effects of these mutants on the essential activation of ubiquitin by the ubiquitin activating protein (E1, Uba1p) as well as their effects on overall yeast growth were measured. Ubiquitin mutants defective for E1 activation were found to correlate with growth defects, although in a non-linear fashion. Further examination of select point mutants indicated that E1 activation deficiencies predict downstream defects in Ubiquitin function, resulting in the observed growth phenotypes. These results indicate that there may be selective pressure for the activity of the E1enzyme to selectively activate ubiquitin protein variants that do not result in functional downstream defects. Additionally, I will describe the use of similar techniques to discover drug resistant mutants of the oncogenic protein BRAFV600E in human melanoma cell lines as an example of the widespread applicability of our strategy for addressing the relationship between protein function and biological fitness.
114

Endothelial Driven Inflammation in Metabolic Disease: A Dissertation

Matevossian, Anouch 25 February 2015 (has links)
Obesity has been on the rise over the last 30 years, reaching worldwide epidemic proportions. Obesity has been linked to multiple metabolic disorders and co-morbidities such as Type 2 Diabetes Mellitus (T2DM), cardiovascular disease, non-alcoholic steatohepatitis and various cancers. Furthermore, obesity is associated with a chronic state of low-grade inflammation in adipose tissue (AT), and it is thought that insulin resistance (IR) and T2DM is associated with the inflammatory state of AT. Endothelial cells (ECs) mediate the migration of immune cells into underlying tissues during times of inflammation, including obesity- and cardiovascular disease-associated inflammation. Cytokines and chemoattractants released from inflamed tissues promote EC activation. Upon activation, ECs increase the expression of leukocyte adhesion molecules (LCAMs) including intercellular adhesion molecule 1 (ICAM-1), vascular adhesion molecule 1 (VCAM-1), E-selectin (E-sel) and P-selectin (P-sel). Increased expression of these LCAMs and increased infiltration of inflammatory cells such as macrophages, have been linked to IR, diabetes and atherosclerosis in obese individuals. Preliminary data from our lab suggests that lipolysis induced by the β-adrenergic receptor agonist CL 316,243 causes an increase in endothelial LCAM gene expression. In addition, histological analyses show increased content of immune cells within AT after the ECs become activated. Here, we demonstrate that CL 316,243-induced lipolysis causes infiltration of neutrophils in wild type (WT) but not E-sel knockout (KO) mice. Following EC activation, there was also a marked increase in cytokine gene expression including IL-1β, MCP-1, and TNF-α in an E-sel-dependent manner. In contrast, fasting-induced lipolysis was associated with increased macrophage infiltration into AT in the absence of EC activation in an E-sel-independent manner. We also examined the role of mitogen activated protein kinase kinase kinase kinase 4 (MAP4K4) as a potential contributor to endothelial activation and atherosclerosis. Here we demonstrate that deletion of MAP4K4 in ECs in vitro diminishes TNF-α-induced EC activation. Additionally, MAP4K4 depletion in primary ECs derived from lungs of mice expressing MAP4K4 shRNA decreases EC activation. Finally, endothelial specific depletion or loss of MAP4K4 reduced atherosclerotic plaque formation in vivo. Taken together, these results highlight the importance of the endothelium in modulating obesity-associated comorbidities. Furthermore, these data implicate endothelial MAP4K4 as a novel regulator of EC activation and consequently AT inflammation and atherosclerosis.
115

Roles of the Mother Centriole Appendage Protein Cenexin in Microtubule Organization during Cell Migration and Cell Division: A Dissertation

Hung, Hui-Fang 03 August 2016 (has links)
Epithelial cells are necessary building blocks of the organs they line. Their apicalbasolateral polarity, characterized by an asymmetric distribution of cell components along their apical-basal axis, is a requirement for normal organ function. Although the centrosome, also known as the microtubule organizing center, is important in establishing cell polarity the mechanisms through which it achieves this remain unclear. It has been suggested that the centrosome influences cell polarity through microtubule cytoskeleton organization and endosome trafficking. In the first chapter of this thesis, I summarize the current understanding of the mechanisms regulating cell polarity and review evidence for the role of centrosomes in this process. In the second chapter, I examine the roles of the mother centriole appendages in cell polarity during cell migration and cell division. Interestingly, the subdistal appendages, but not the distal appendages, are essential in both processes, a role they achieve through organizing centrosomal microtubules. Depletion of subdistal appendages disrupts microtubule organization at the centrosome and hence, affects microtubule stability. These microtubule defects affect centrosome reorientation and spindle orientation during cell migration and division, respectively. In addition, depletion of subdistal appendages affects the localization and dynamics of apical polarity proteins in relation to microtubule stability and endosome recycling. Taken together, our results suggest the mother centriole subdistal appendages play an essential role in regulating cell polarity. A discussion of the significance of these results is included in chapter three.
116

Role of Energy Metabolism in the Thermogenic Gene Program

Nam, Minwoo 11 January 2017 (has links)
In murine and human brown adipose tissue (BAT), mitochondria are powerful generators of heat. Emerging evidence has suggested that the actions of mitochondria extend beyond this conventional biochemical role. In mouse BAT and cultured brown adipocytes, impaired mitochondrial respiratory capacity is accompanied by attenuated expression of Ucp1, a key thermogenic gene, implying a mitochondrial retrograde signaling. However, few have investigated this association in the context of mitochondria-nucleus communication. Using mice with adipose-specific ablation of LRPPRC, a regulator of respiratory capacity, we show that respiration-dependent retrograde signaling from mitochondria to nucleus contributes to transcriptional and metabolic reprogramming of BAT. Impaired respiratory capacity triggers down-regulation of thermogenic and oxidative genes, promoting a storage phenotype in BAT. This retrograde regulation functions by interfering with promoter-specific recruitment of PPARg. In addition, cytosolic calcium may mediate the retrograde signal from mitochondria to nucleus. These data are consistent with a model whereby BAT connects its respiratory capacity to thermogenic gene expression, which in turn contributes to determining its metabolic commitment. Additionally, we find that augmented respiratory capacity activates the thermogenic gene program in inguinal (subcutaneous) white adipose tissue (IWAT) from adipose-specific LRPPRC transgenic mice. When fed a high-fat diet at thermoneutrality, these mice exhibit metabolic improvements as shown by reduced fat mass and improved insulin sensitivity. Furthermore, there is increased recruitment of brown-like adipocytes in IWAT and thus energy expenditure is significantly increased, providing a potential explanation for protection from obesity. These data suggest that augmented respiratory capacity promotes ‘browning’ of IWAT, which has beneficial effects on obesity and diabetes.
117

Morphogenetic Requirements for Embryo Patterning and the Generation of Stem Cell-derived Mice: A Dissertation

Yoon, Yeonsoo 15 July 2013 (has links)
Cell proliferation and differentiation are tightly regulated processes required for the proper development of multi-cellular organisms. To understand the effects of cell proliferation on embryo patterning in mice, we inactivated Aurora A, a gene essential for completion of the cell cycle. We discovered that inhibiting cell proliferation leads to different outcomes depending on the tissue affected. If the epiblast, the embryonic component, is compromised, it leads to gastrulation failure. However, when Aurora A is inactivated in extra-embryonic tissues, mutant embryos fail to properly establish the anteroposterior axis. Ablation of Aurora A in the epiblast eventually leads to abnormal embryos composed solely of extra-embryonic tissues. We took advantage of this phenomenon to generate embryonic stem (ES) cell-derived mice. We successfully generated newborn pups using this epiblast ablation chimera strategy. Our results highlight the importance of coordinated cell proliferation events in embryo patterning. In addition, epiblast ablation chimeras provide a novel in vivo assay for pluripotency that is simpler and more amenable to use by stem cell researchers.
118

Molecular Mechanisms of Endocytosis: Trafficking and Functional Requirements for the Transferrin Receptor, Small Interfering RNAs and Dopamine Transporter: A Dissertation

Navaroli, Deanna M. 30 April 2012 (has links)
Endocytosis is an essential function of eukaryotic cells, providing crucial nutrients and playing key roles in interactions of the plasma membrane with the environment. The classical view of the endocytic pathway, where vesicles from the plasma membrane fuse with a homogenous population of early endosomes from which cargo is sorted, has recently been challenged by the finding of multiple subpopulations of endosomes. These subpopulations vary in their content of phosphatidylinositol 3- phosphate (PI3P) and Rab binding proteins. The role of these endosomal subpopulations is unclear, as is the role of multiple PI3P effectors, which are ubiquitously expressed and highly conserved. One possibility is that the different subpopulations represent stages in the maturation of the endocytic pathway. Alternatively, endosome subpopulations may be specialized for different functions, such as preferential trafficking of specific endocytosed cargo. To determine whether specific receptors are targeted to distinct populations of endosomes, we have built a platform for total internal reflection fluorescence (TIRF) microscopy coupled with structured illumination capabilities named TESM (TIRF Epifluorescence Structured light Microscope.) In this study, TESM, along with standard biochemical and molecular biological tools, was used to analyze the dynamic distribution of two highly conserved Rab5 and PI3P effectors, EEA1 and Rabenosyn-5, and systematically study the trafficking of transferrin. Rabenosyn-5 is necessary for proper expression of the transferrin receptor as well as internalization and recycling of transferrin-transferrin receptor complexes. Results of combining TIRF with structured light Epifluorescence (SLE) indicate that the endogenous populations of EEA1 and Rabenoysn-5 are both distinct and partially overlapping. The application of antisense oligonucleotides as potential therapeutic agents requires effective methods for their delivery to the cytoplasm of target cells. In collaboration with RXi Pharmaceuticals we show the efficient cellular uptake of the antisense oligonucleotide sd-rxRNA® in the absence of delivery vehicle or protein carrier. In this study TIRF, SLE, and biochemical approaches were utilized to determine whether sd-rxRNA traffics and functions along specific endosomal pathways. Sd-rxRNA was found to traffic along the degradative pathway and require EEA1 to functionally silence its target. These new findings will help define the cellular pathways involved in RNA silencing. Neurotransmitter reuptake and reuse by neurotransmitter transport proteins is fundamental to transmitter homeostasis and synaptic signaling. In order to understand how trafficking regulates transporters in the brain and how this system may be disregulated in monoamine-related pathologies, the transporter internalization signals and their molecular partners must be defined. We utilized a yeast two-hybrid system to identify proteins that interact with the dopamine transporter (DAT) endocytic signal. The small, membrane associated, GTPase Rin was determined to specifically and functionally interact with the DAT endocytic signal, regulating constitutive and protein kinase C (PKC) – stimulated DAT endocytosis. The results presented in this study provide new insights into functions and components of endocytosis and enhance the understanding of endocytic organization.
119

EspFU, an Enterohemorrhagic E. Coli Secreted Effector, Hijacks Mammalian Actin Assembly Proteins by Molecular Mimicry and Repetition: A Dissertation

Lai, YuShuan (Cindy) 25 April 2014 (has links)
Enterohemorrhagic E. coli (EHEC) is a major cause of food borne diarrheal illness worldwide. While disease symptoms are usually self-resolving and limited to severe gastroenteritis with bloody diarrhea, EHEC infection can lead to a life threatening complication known as Hemolytic Uremic Syndrome (HUS), which strikes children disproportionately and is the leading cause of kidney failure in children. Upon infection of gut epithelia, EHEC produces characteristic lesions called actin pedestals. These striking formations involve dramatic rearrangement of host cytoskeletal proteins. EHEC hijacks mammalian signaling pathways to cause destruction of microvilli and rebuilds the actin cytoskeleton underneath sites of bacterial attachment. Here, we present a brief study on a host factor, Calpain, involved in microvilli effacement, and an in depth investigation on a bacterial factor, EspFU, required for actin pedestal formation in intestinal cell models. Calpain is activated by both EHEC and the related pathogen, enteropathogenic E. coli (EPEC), during infection and facilitates microvilli disassembly by cleavage of a key membrane-cytoskeleton anchoring substrate, Ezrin. Actin pedestal formation is facilitated by the injection of two bacterial effectors, Tir and EspFU, into host cells, which work in concert to manipulate the host actin nucleators N-WASP and Arp2/3. EspFU hijacks key host signaling proteins N-WASP and IRTKS by mimetic displacement and has evolved to outcompete mammalian host ligands. Multiple repeats of key functional domains of EspFU are essential for actin pedestal activity through proper localization and competition against the an abundant host factor Eps8 for binding to IRTKS.
120

Exploring the Role of FUS Mutants from Stress Granule Incorporation to Nucleopathy in Amyotrophic Lateral Sclerosis: A Dissertation

Ko, Hae Kyung 03 September 2015 (has links)
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by preferential motor neuron death in the brain and spinal cord. The rapid disease progression results in death due to respiratory failure, typically within 3-5 years after disease onset. While ~90% of cases occur sporadically, remaining 10% of ALS cases show familial inheritance, and the number of genes linked to ALS has increased dramatically over the past decade. FUS/TLS (Fused in Sarcoma/ Translocated to liposarcoma) is a nucleic acid binding protein that may regulate several cellular functions, including RNA splicing, transcription, DNA damage repair and microRNA biogenesis. More than 50 mutations in the FUS gene are linked to 4% of familial ALS, and many of these may disrupt the nuclear localization signal, leading to variable amounts of FUS accumulation in the cytoplasm. However, the mechanism by which FUS mutants cause motor neuron death is still unknown. The studies presented in this dissertation focused on investigating the properties of FUS mutants in the absence and presence of stress conditions. We first examined how ALS-linked FUS mutants behaved in response to imposed stresses in both cell culture and zebrafish models of ALS. We found that FUS mutants were prone to accumulate in stress granules in proportion to their degree of cytoplasmic mislocalization under conditions of oxidative stress, ER stress, and heat shock. However, many FUS missense mutants are retained predominantly in the nucleus, and this suggested the possibility that these mutants might also perturb one or more nuclear functions. In a human cell line expressing FUS variants and in human fibroblasts from an ALS patient, mutant FUS expression was associated with enlarged promyelocytic leukemia nuclear bodies (PML-NBs) under basal condition. Upon oxidative insult with arsenic trioxide (ATO), PML-NBs in control cells increased acutely in size and were turned over within 12-24 h, as expected. However, PML-NBs in FUS mutant cells did not progress through the expected turnover but instead continued to enlarge over 24 h. We also observed a persistent accumulation of the transcriptional repressor Daxx and the 11S proteasome regulator in association with these enlarged PML-NBs. Furthermore, the peptidase activities of the 26S proteasome were decreased in FUS mutant cells without any changes in the expression of proteasome subunits. These results demonstrate that FUS mutant expression may alter cellular stress responses as manifested by (i) accumulation of mutant FUS into stress granules and (ii) inhibition of PML-NB dynamics. These findings suggest a novel nuclear pathology specific to mutant FUS expression that may perturb nuclear homeostasis and thereby contribute to ALS pathogenesis.

Page generated in 0.1247 seconds