• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Skeletal muscle growth and maintenance depend on BMP signaling / La croissance et la maintenance des muscles squelettiques dépendent de la signalisation BMP

Schirwis, Elija 24 March 2014 (has links)
Les facteurs de croissance de la superfamille TGF-β jouent un rôle dans toutes les étapes de la myogenèse prénatale et régissent l'entretien des muscles adultes. Les protéines morphogénétiques osseuses (BMPs) sont membres de la sous-famille des TGF-β et sont à l’origine de signaux clés régulant le développement musculaire embryonnaire. Cette thèse étudie le rôle de la signalisation BMP dans les cellules souches musculaires, dénommées cellules satellites. J'ai montré qu’après la naissance les BMPs régulent la croissance des fibres musculaires dépendante des cellules satellites. Suite à l’inhibition de la voie BMP, j'ai observé que les précurseurs myogéniques deviennent quiescents et cessent de progresser vers la différenciation, tandis que le traitement avec BMP4 suffit pour réactiver leur programme myogénique. La signalisation BMP affecte aussi la taille du muscle indépendante des cellules satellites. J'ai observé que les BMPs fournissent un signal hypertrophique et protègent de l’atrophie musculaire suite à une dénervation. Dans les conditions précédentes, la voie BMP inhibe l'expression de l’ubiquitine ligase E3, Fbxo30. J'ai analysé l'interaction entre la myostatine et la signalisation BMP. La myostatine est un autre membre de la famille des TGF-β, mais elle se lie à des récepteurs différents de ceux des BMPs. En l'absence de myostatine, l’hypertrophie musculaire dépend entièrement de la signalisation BMP. La dénervation musculaire chez les souris déficientes en myostatine provoque une atrophie, aggravée par l’inhibition des BMPs. Par conséquent, la voie BMP est un signal hypertrophique essentiel dans le muscle adulte qui prédomine sur la signalisation de la myostatine. / Growth factors of the TGF-β superfamily play a role in all stages of prenatal myogenesis and govern adult muscle maintenance. Bone morphogenetic proteins (BMPs) are members of the TGF-β subfamily and are key signals that regulate embryonic and fetal muscle development. This work investigates the role of BMP signaling in muscle stem cells of the postnatal muscle, the satellite cells. I showed that BMPs regulate satellite cell-dependent growth of postnatal fibers and the generation of the satellite cell pool. After inhibition of BMP signaling, I observed that myogenic precursor cells become quiescent and fail to progress towards differentiation, whereas treatment with BMP4 on its own is sufficient to reactivate the myogenic program. BMP signaling also affects the size of the muscle in a satellite cell-independent manner. I found that BMPs provide a hypertrophic signal and protect from denervation-induced muscle atrophy. Under such condition, BMP signaling inhibits the expression of the E3 ubiquitin ligase Fbxo30. I further analyzed the interaction between myostatin and BMP signaling. Myostatin is another member of TGF-β superfamily, but myostatin and BMPs bind to different receptors for signaling. Large muscles in absence of myostatin entirely depend on the presence of BMP signaling. Denervation of muscle in myostatin mutant mice causes a strong muscle atrophy, which is aggravated by the inhibition of BMP signaling. Therefore, the BMP pathway is a fundamental hypertrophic signal in adult muscle and is dominant over myostatin signaling.
2

Macrophages au cours de la régénération musculaire : rôle du stress oxydant et des molécules sécrétées : de la physiologie intégrative à la biologie fondamentale / Macrophages during skeletal muscle regeneration : role of oxidative stress and secreted molecules : from fundamental biology to integrative physiology

Le Moal, Emmeran 17 December 2015 (has links)
Le muscle strié squelettique dispose de la capacité de régénérer à la suite d’un dommage, qu’il soit traumatique, chimique, pathologique ou encore associé à l’exercice. La régénération musculaire est un phénomène complexe faisant appel à de nombreux types cellulaires tels que les cellules souches musculaires, les cellules vasculaires ou encore les cellules immunitaires. Parmi ces cellules immunitaires, les macrophages jouent un rôle majeur, en sécrétant des facteurs trophiques notamment. En effet, en fonction de leur état d’activation, pro ou anti-inflammatoire, les macrophages exercent des effets distincts sur le comportement des cellules souches musculaires et la restauration du tissu musculaire. Parmi les régulateurs des macrophages et des cellules souches musculaires émergent les espèces réactives de l’oxygène.Ainsi, ce travail de doctorat pluridisciplinaire en sciences du sport a pour ambition d’identifier et de déterminer l’implication des espèces réactives de l’oxygène et des molécules sécrétées par les macrophages ainsi leurs effets fonctionnels respectifs au cours de la régénération musculaire chez la souris et l’Homme. En outre, un suivi des marqueurs biologiques associés à la balance pro/antioxydante réalisé chez des footballeurs de haut niveau durant une saison permet de renseigner l’évolution d’un facteur associé à l’étiologie des dommages induits par l’exercice. / Skeletal muscle has the remarkable ability to regenerate following injury. Skeletal muscle regeneration is a complex process that requires different cell types to restore the tissue. Among these cells are found muscle stem cells, vascular cells and immune cells. Among immune cells, macrophages are play a key role by releasing trophic factors. Depending on their activation states, pro or antiinflammatory, they exert different effects on muscle stem cells and regeneration process. Interestingly, reactive oxygen species emerge as important regulators of muscle stem cells and macrophage biology.Consequently, this pluridisciplinary PhD thesis in sport sciences aims to identify and determine the involvement of macrophage derived-reactive oxygen species and secreted molecule and their functional effects on skeletal muscle regeneration both in mice and human. Furthermore, a one-season follow-up of pro/antioxidant balance in high level soccer players contributes to knowledge regarding the evolution of a factor involved in the etiology of exercise-induced muscle damages
3

Rôle des homéoprotéines SIX dans les progéniteurs myogéniques au cours du développement musculaire / Role of SIX homeoproteins in myogenic progenitors during muscle development

Wurmser, Maud 31 October 2017 (has links)
Les homéoprotéines SIX sont codées par les gènes Sine oculis homeobox related genes Six1 à Six6 chez les vertébrés parmi lesquels Six1, Six2, Six4 et Six5 sont exprimés dans le lignage myogénique. Bien que Six1 et Six4 soient requis pour la myogenèse hypaxiale, les animaux doubles KO pour ces deux gènes (s1s4KO) forment leurs muscles épaxiaux et craniofaciaux. Nous avons caractérisé le phénotype de mutants composites des gènes Six et avons montré que l’absence de Six1 et Six2 empêchait la formation des muscles craniofaciaux et empirait les défauts de formation des muscles des membres observés chez les fœtus mutants pour Six1. Nous avons aussi observé que les fœtus dépourvus d’activité de SIX1, SIX2, SIX4 et SIX5 étaient toujours capables de former leurs muscles épaxiaux, mais que l’expression de Pax7 dans leurs progéniteurs myogéniques était fortement diminuée et mêlée à l’expression de Myogénine. Alors que les fœtus s1s4KO forment des muscles épaxiaux, leurs cellules PAX7+ ont un défaut de nichage entre la membrane plasmique des myofibres et la lame basale qui les entoure. Nos analyses transcriptomiques, nos expériences de transplantation et nos études in vitro nous ont permis de conclure que le nichage des cellules PAX7+ nécessitait un environnement adéquat combinant des propriétés des myofibres et des cellules PAX7+ ; environnement perturbé dans les muscles épaxiaux s1s4KO. Nos expériences de transplantation nous ont aussi permis de conclure que Six1 et Six4 étaient requis pour une bonne ré-innervation des myofibres après blessure et pour la mise en place du phénotype rapide de ces myofibres. De plus, les muscles transplantés avec des cellules PAX7+ fœtales s1s4KO après blessure se reforment d’un grand nombre de petites myofibres. Nous avons pu relier ce phénotype au comportement des cellules s1s4KO in vitro où elles montrent un défaut de fusion. Enfin, les homéoprotéines SIX ont besoin de co-facteurs pour induire l’expression de leurs gènes cibles, tels que les protéines EYA codées par les gènes Eya1 à Eya4 chez les vertébrés. Eya3 et Eya4 sont fortement exprimés dans les cellules satellite au cours de la régénération, cellules qui requièrent aussi Six1 pour une réparation musculaire efficace. Nous avons étudié la régénération musculaire en absence d’expression d’Eya3 et n’avons pas observé de défaut nous menant à la conclusion qu’Eya3 n’est pas requis pour la régénération musculaire adulte, mais que sa perte d’expression était peut-être compensée par un autre gène Eya chez les animaux mutants. Pour conclure, Six1 et Six2 sont indispensables à la formation des muscles craniofaciaux, et Six1 et Six4 sont requis pour la myogenèse hypaxiale, et pour l’établissement d’un environnement propice à la maturation des myofibres fœtales et au nichage des cellules PAX7+ au cours de la myogenèse épaxiale, et permettant la croissance des myofibres et leur ré-innervation après blessure. La collaboration des protéines SIX avec leurs co-facteurs EYA au cours de la myogenèse nécessite d’autres études pour mieux définir leurs fonctions. / SIX homeoproteins are encoded by the Sine oculis homeobox related genes Six1 to Six6 in vertebrates among which Six1, Six2, Six4 and Six5 are expressed in the muscle lineage. Whereas Six1 and Six4 are required for hypaxial myogenesis, double KO for those two genes (s1s4KO) still form their epaxial and craniofacial muscles. We further characterized the phenotype of compound Six mutant embryos and showed that the absence of Six1 and Six2 completely impairs craniofacial myogenesis and worsen muscle limb development observed in single Six1 mutants. We also showed that mouse fetuses devoid of SIX1, SIX2, SIX4 and SIX5 activity are still able to develop epaxial muscles, but that Pax7 expression in myogenic progenitors of these mutants is reduced and intermingled with Myogenin expression. While s1s4KO fetuses still develop epaxial muscles, their PAX7+ cells show a perturbed homing process into their niche, between the plasma membrane of a myofibre and the basal lamina surrounding it. Transcriptomic analysis, transplantation experiments and in vitro studies allowed us to conclude that the homing of PAX7+ cells into their niche during fetal myogenesis requires an adequate environment combining properties of the myofibers and the PAX7+ cells; environment disturbed in s1s4KO epaxial muscles. Transplantation experiments also led us to conclude that Six1 and Six4 are required for proper myofiber re-inervation after injury and for the establishment of the fast phenotype of myofibers. Furthermore, muscles transplanted with s1s4KO fetal PAX7+ cells after injury are formed of numerous and tiny myofibers. We could link this phenotype to the behavior of s1s4KO cells in vitro where they showed perturbed fusion. Finally, SIX homeoproteins require co-factors to induce their target genes expression, as EYA proteins encoded by Eya1 to Eya4 in vertebrates. Eya3 and Eya4 are strongly expressed in satellite cells during regeneration, cells in which Six1 is also required for proper muscle repair. We investigated muscle regeneration in absence of Eya3 expression and observed no obvious phenotype. We concluded that Eya3 is not required for muscle regeneration but that other Eya genes might compensate its function in KO mouse. To conclude, Six1 and Six2 are required for craniofacial myogenesis and Six1 and Six4 for hypaxial myogenesis and for the establishment of a proper environment allowing myofibre maturation and PAX7+ cells homing during fetal epaxial myogenesis and enabling myofibre growth and re-innervation after injury. The role of the collaboration between SIX and EYA proteins during myogenesis still needs more investigation.
4

Rôle du facteur de transcription Srf au cours de l’atrophie du muscle squelettique et dans les cellules satellites / Role of the transcription factor Srf during skeletal muscle atrophy and in satellite cells

Collard, Laura 30 October 2013 (has links)
Le muscle squelettique adulte est un tissu possédant la capacité fondamentale d’adapter sa taille à la demande fonctionnelle : il peut s’atrophier ou s’hypertrophier en réponse à une variation de la charge mécanique qui lui est appliquée. A l’heure actuelle, les facteurs impliqués dans la plasticité musculaire demeurent méconnus. D’une part, grâce à différents modèles d’atrophie musculaire, nous démontrons que le facteur de transcription Srf joue le rôle de médiateur de la mécano-transduction par la voie actine/Mrtfs/Srf. L’arrêt de l’activité mécanique provoque une accumulation nucléaire d’actine monomérique, une délocalisation de Mrtf-A, coactivateur de Srf, et une diminution de l’activité de Srf, se traduisant notamment par une baisse de la transcription Srf-dépendante. Les gènes cibles de Srf comptant un grand nombre de protéines sarcomériques, telles que l’α-actine squelettique, la réduction de leur expression pourrait participer à l’atrophie musculaire. De plus, nos travaux suggèrent que la diminution de l’activité de Srf pourrait influencer l’organisation du réseau mitochondrial et le flux autophagique par des mécanismes qui restent à élucider. D’autre part, en tirant parti d’un modèle d’invalidation conditionnelle et inductible de Srf dans les cellules satellites, nous montrons que le phénomène d’hypertrophie compensatoire requiert l’expression de Srf par les cellules satellites. L’absence de Srf n’altère ni la prolifération ni l’entrée en différenciation des myoblastes, néanmoins elle provoque un défaut de fusion des myoblastes aux fibres au cours de l’hypertrophie induite par surcharge. Ainsi, nos travaux démontrent que Srf est un acteur majeur de la plasticité musculaire, à la fois en tant que médiateur de la mécano-transduction par la voie actine/Mrtfs/Srf et par son implication dans la fusion des cellules satellites aux fibres musculaires, nécessaire à l’hypertrophie compensatoire. / Adult skeletal muscle is able to adapt its size to functional demand. It can undergo atrophy or hypertrophy according to mechanical load. To date, the molecules that mediate muscle plasticity remain unclear.Using different models inducing muscle atrophy, we show that the transcription factor Srf is a mediator of mechanotransduction through the actin/Mrtfs/Srf pathway. Mechanical load abolition leads to G-actin nuclear accumulation, delocalization of Mrtf-A, an Srf coactivator, and Srf activity downregulation. This results in a decrease in Srf-dependent transcription. Many Srf target genes encode sarcomeric proteins such as α-skeletal actin, thus a downregulation of Srf-dependent transcription could participate to muscle atrophy. In addition, our results suggest that Srf activity decrease could affect mitochondrial network organization and autophagic flux in a way that remains to be determined. Besides, using a satellite cell-specific conditional and inducible Srf knockout, we show that overload hypertrophy requires Srf expression by satellite cells. Myoblasts proliferation and early differentiation are not altered by Srf loss. However, mutant myoblasts are unable to fuse with myofibers during overload hypertrophy. Altogether, our results demonstrate that Srf is an important player in skeletal muscle plasticity: it is a mediator of mechanotransduction via the actin/Mrtfs/Srf pathway and its expression by satellite cells is required for myoblasts to fuse with myofibers during overload hypertrophy.
5

Rôle du facteur de transcription Srf au cours de l'atrophie du muscle squelettique et dans les cellules satellites

Collard, Laura 30 October 2013 (has links) (PDF)
Le muscle squelettique adulte est un tissu possédant la capacité fondamentale d'adapter sa taille à la demande fonctionnelle : il peut s'atrophier ou s'hypertrophier en réponse à une variation de la charge mécanique qui lui est appliquée. A l'heure actuelle, les facteurs impliqués dans la plasticité musculaire demeurent méconnus. D'une part, grâce à différents modèles d'atrophie musculaire, nous démontrons que le facteur de transcription Srf joue le rôle de médiateur de la mécano-transduction par la voie actine/Mrtfs/Srf. L'arrêt de l'activité mécanique provoque une accumulation nucléaire d'actine monomérique, une délocalisation de Mrtf-A, coactivateur de Srf, et une diminution de l'activité de Srf, se traduisant notamment par une baisse de la transcription Srf-dépendante. Les gènes cibles de Srf comptant un grand nombre de protéines sarcomériques, telles que l'α-actine squelettique, la réduction de leur expression pourrait participer à l'atrophie musculaire. De plus, nos travaux suggèrent que la diminution de l'activité de Srf pourrait influencer l'organisation du réseau mitochondrial et le flux autophagique par des mécanismes qui restent à élucider. D'autre part, en tirant parti d'un modèle d'invalidation conditionnelle et inductible de Srf dans les cellules satellites, nous montrons que le phénomène d'hypertrophie compensatoire requiert l'expression de Srf par les cellules satellites. L'absence de Srf n'altère ni la prolifération ni l'entrée en différenciation des myoblastes, néanmoins elle provoque un défaut de fusion des myoblastes aux fibres au cours de l'hypertrophie induite par surcharge. Ainsi, nos travaux démontrent que Srf est un acteur majeur de la plasticité musculaire, à la fois en tant que médiateur de la mécano-transduction par la voie actine/Mrtfs/Srf et par son implication dans la fusion des cellules satellites aux fibres musculaires, nécessaire à l'hypertrophie compensatoire.
6

Caractérisation de la cellule souche adulte du ganglion de la racine dorsal vers la compréhension de son rôle en condition physiopathologique / Identification and characterization of adult DRG stem cells towards their role and fate in physiopathological conditions

Maniglier, Madlyne 20 September 2016 (has links)
Des cellules souches dérivées des crêtes neurales ont été trouvées dans divers tissus adultes comme le ganglion de la racine dorsale (GRD). Ce projet de thèse vise à identifier et caractériser la cellule souche de ce tissu. Premièrement, nous avons étudié le potentiel souche de l’ensemble des cellules du GRD. In vitro, certaines sont capables de proliférer pour former des sphères multipotentes qui génèrent des neurones, des glies et des myofibroblastes. In vivo, selon le contexte dans lequel les cellules issues des sphères sont transplantées, elles génèreront différent types cellulaires. Dans le funiculus dorsal démyélinisé de la souris Nude, elles se différencient en cellule de Schwann alors que dans un cerveau de souris nouveau-né Shiverer, elles produisent des péricytes qui s’intègrent aux capillaires sanguins. Bien que le GRD possède une population cellulaire au potentiel souche, son identité et son rôle restent à découvrir. Afin d’identifier cette cellule, nous avons combiné plusieurs techniques et souris transgéniques pour éliminer les diverses cellules candidates. Nous avons découvert plusieurs cellules avec une plasticité intéressante. Deux progéniteurs unipotents ayant la morphologie et la signature moléculaire de péricyte et de fibroblaste de l’endonèvre ont été trouvés dans le nerf sciatique et le GRD adulte. Enfin la cellule souche du GRD correspond de par sa morphologie à une cellule satellite (SGC). Elle prolifère et est bi-potente in vitro. Elle génère, in vivo, des SGC mais également des neurones en condition pathologique. Mieux comprendre ses mécanismes de régulations pourrait ouvrir la voie à de nouvelles stratégies thérapeutiques pour les maladies du SNP. / Neural crest-derived stem cells have been identified in various adult tissues including the dorsal root ganglia (DRG). This thesis project aims to identify and characterize the putative adult DRG stem cell. First, we studied the stemness potential of global DRG cell populations. In vitro, within the adult DRG, some cells were able to form multipotent spheres that gave rise to neurons, glia and myofibroblasts. The graft of the DRG cell forming spheres proved their differentiation plasticity in vivo. Depending upon their graft environment; they generate different cell types. In the demyelinating dorsal funiculus of adult Nude mice, they formed myelinating Schwann cells while in the brain of new born Shiverer mice, they produced pericytes integrated within capillaries. Although, the DRG cells seemed to have an interesting stemness potential, their identity and their physiopathological role remain unknown. In order to characterize this stem cell and study its fate within the DRG, we combined several technics with transgenic mouse lines to exclude the diverse DRG candidate cells. We discovered different cells with interesting plasticity. Two types of unipotent progenitors that have the morphology and molecular characteristics of pericyte and endoneurial fibroblast in the adult sciatic nerve and DRG. But most of all, we found that the DRG stem cell has the phenotype of the satellite glial cell (SGC). They proliferate and are bipotente in vitro. In vivo these stem cells generate SGC under normal condition and produce glia more neurons when necessary in pathological condition. Understanding these regulation mechanisms could open the way to new therapeutic strategies for PNS diseases.

Page generated in 0.0801 seconds