• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 7
  • 1
  • Tagged with
  • 30
  • 25
  • 10
  • 10
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification et analyse fonctionnelle de nouveaux gènes impliqués dans la myogénèse chez la drosophile : et mise en évidence d'une transition métabolique nécessaire à la différenciation musculaire / Identification and functional analysis of new genes involved in myogenesis in Drosophila : and demonstration of a metabolic transition required for muscle differentiation

Tixier, Vanessa 25 November 2011 (has links)
Il existe de nombreuses similitudes au niveau des mécanismes génétiques et moléculaires qui contrôlent les différentes étapes de la myogenèse entre la drosophile et les vertébrés. Afin de mettre en évidence de nouveaux gènes impliqués dans ce processus, nous avons sélectionné des gènes conservés au cours de l’évolution afin de tester leur rôle dans la myogenèse. Des gènes candidats conservés entre le poisson zèbre et la drosophile et exprimés dans des compartiments musculaires ont été sélectionnés in silico à partir des bases de données du poisson-zèbre (Zfin) et de la drosophile (BDGP). Ainsi, 120 gènes ont été mis en évidence, dont plus de la moitié jouerait un rôle dans le métabolisme, et sur les 23 testés par ARNi, 20 donnent des phénotypes musculaires suite à la diminution de leur expression. Les défauts musculaires observés ont permis de replacer le rôle putatif de ces 20 gènes dans le processus myogénique, montrant l’efficacité de cette approche. L’analyse fonctionnelle du gène Pglym78 impliqué dans la glycolyse a ensuite été réalisée. Ce gène est exprimé spécifiquement dans les muscles somatiques et son atténuation donne des défauts de différenciation musculaire caractérisés par un blocage de la fusion des myoblastes et la formation de muscles plus fins. L’ensemble des autres gènes de la glycolyse s’exprime de la même façon et leur inhibition donne aussi des problèmes de différenciation. Ainsi, il existerait au moment de la différenciation musculaire un switch métabolique se traduisant par une augmentation de la glycolyse, similaire à celui mis en évidence dans les cellules cancéreuses, pouvant contribuer à former l’ATP ainsi que les molécules nécessaires pour la synthèse des protéines, le tout permettant la croissance musculaire. Enfin, l’inhibition de la voie insuline, connue pour stimuler la glycolyse mais également la croissance musculaire, diminue l’activité glycolytique et donne des phénotypes similaires à ceux observés lorsque l’on bloque la glycolyse. Nos résultats mettent en évidence l’existence d’un switch métabolique vers la glycolyse, médié au moins en partie par la voie insuline afin de permettre l’augmentation de la synthèse de biomasse dans le muscle, nécessaire à la poursuite de sa différenciation. Ce travail révèle ainsi l’existence d’un lien entre le métabolisme et le développement musculaires. / A large number of genes involved in myogenesis has been described, but several gaps in comprehension of mechanisms giving rise to functional muscles are still remaining. To fill in these gaps, we selected conserved uncharacterized genes expressed in muscular compartments in drosophila and zebrafish and tested their functions by RNAi knockdown. We found that most of the candidate genes have a role in different steps of embryonic myogenesis in drosophila and interestingly more than a half of them are involved in metabolism. One of these candidates, Pglym78, encodes a glycolytic enzyme and gives rise to late muscle differentiation defects after knockdown in drosophila. Glycolysis is a major metabolic process providing energy and components for biomass synthesis to rapidly growing/proliferating cells such as cancer cells but its role in embryonic development remains unknown. Here we show that starting from midembryogenesis, drosophila Pglym78 and almost all the glycolytic genes display muscle specific expression and that, consistent with this, an important increase in glycolytic activity appears since embryonic stage 14, suggesting that glycolysis can play a role in late steps of myogenesis. This possibility is supported by the fact that attenuation of Pglym78 and other glycolytic genes results in affected muscle differentiation. As shown in Pglm78 knockdown embryos these phenotypes are due to myoblasts fusion arrest and formation of significantly smaller muscle fibres.In order to understand how glycolysis controls myogenesis, we analysed the insulin pathway known to control glycolytic activity and to positively regulate muscle growth by stimulating protein synthesis. Interestingly, inhibition of insulin pathway in differentiating embryonic drosophila muscles leads to the reduced activity of PyK and to phenotypes that are reminiscent of those of glycolytic genes such as fusion arrest and formation of smaller fibres. Thus, our data reveal that metabolic switch to glycolysis positively regulated by insulin pathway is required to support increased biomass synthesis in syncytial muscle cells, revealing direct link between metabolism and development.
2

Etude du développement des tendons et de leur interaction avec les précurseurs de muscles lors de la myogenèse appendiculaire chez la Drosophile / Analysis of tendon development and interactions with myoblasts during appendicular myogenesis of Drosophila

Laddada, Lilia 04 May 2018 (has links)
La mise en place du système musculo-(exo)squelettique de la drosophile est un modèle d’organisation particulièrement propice à l’étude des interactions tissulaires au cours du développement.Notre étude vise à, d’une part, comprendre la myogenèse appendiculaire à travers l’étude des interactions précoces entre les précurseurs de tendon et les myoblastes, et d’autre part, étudier les mécanismes de différenciation des précurseurs de tendons associés au disque de patte. Dans ce contexte nous avons adapté la méthode GRASP (GFP Reconstitution Across Synaptic Partners) ainsi que l’imagerie en temps réel à notre modèle pour démontrer l’existence des interactions cellulaires entre les précurseurs de tendons et les myoblastes, nous avons aussi mis au point une approche cellule-spécifique afin de trier les précurseurs de tendons et les myoblastes associés au disque de patte, ce qui nous a permis d’obtenir dans un premier temps les données transcriptomiques des précurseurs de tendons. J’ai également étudié l’impact de l’altération des précurseurs de tendon sur le comportement des myoblastes associés et inversement. Nos résultats montrent que l’altération du développement des tendons entraîne une désorganisation spatiale des myoblastes environnants. Dans la seconde partie de mon projet, je me suis intéressée à l’implication de la voie Notch et des gènes de la famille odd-skipped dans la différenciation et la morphogenèse des précurseurs de tendon. J’ai ainsi démontré que Notch est nécessaire et localement suffisant pour induire l’expression de stripe et que les gènes odd-skipped et stripe coopèrent en aval cette voie pour permettre l’invagination et l’élongation sous forme de tube des longs tendons internes de la patte. / The formation of the musculo-(exo)skeletal system in drosophila is a remarkable example of tissue patterning making it a suitable model for studying multiple tissue interactions during development.The aim of our study is to better understand appendicular myogenesis through the identification of early interactions between tendon and muscle precursors, and by investigating the mechanisms governing the specification of tendon cell precursors of the leg disc. In order to characterize the interaction between these two tissues, we adapted the GRASP method (GFP Reconstitution Across Synaptic Partners) and set up live imaging experiments to reveal cellular interactions between tendon precursors and myoblasts. We have also conducted a genome wide cell-specific analysis using Fluorescence-activated cell sorting (FACS) on imaginal discs which allowed us to perform a tendon cell specific transcriptional analysis.To test whether reciprocal muscle-tendon interactions are necessary for correct muscle-tendon development, I performed experiments to specifically interfere with the development of tendon or muscle precursors. By altering tendon precursors formation during the early steps of leg development, we affect the spatial localization of the associated myoblasts. These findings provide the first evidence of the developmental impact of early interactions between muscle and tendon precursors in the leg disc.In the second part of my project, I investigated the role of Notch pathway and odd-skipped genes in the differentiation and morphogenesis of tendon precursors. Thus, I have demonstrated that Notch signalling pathway is necessary and locally sufficient for the initiation of stripe expression, and that both odd-skipped genes and stripe are required downstream of Notch to promote morphological changes associated with formation of long tubular tendons.
3

Recherche de partenaires protéiques du facteur de transcription HRT1 par la technique du double-hybride : Identification de BOIP, nouvel ADNc codant une protéine interagissant avec le domaine Orange de HRT1 / Searching of prteic partner of the transcription factor HRT1 by the two-hybrid system : Identification of BOIP, new cDNA coding a protein interacting with the Orange domain of HRT1

Van Wayenbergh, Reginald 16 December 2004 (has links)
Un nouveau facteur de transcription, appartenant à la famille des protéines à domaine bHLH, a récemment été isolé dans notre laboratoire. Initialement appelé « clone bc8 » puis HRT1, ce facteur présentait des similitudes avec les protéines Hairy and Enhancer of split qui interviennent notamment dans le phénomène d’inhibition latérale lors de la formation du tissu neural. Des études d’hybridation in situ réalisées chez l'embryon de xénope ont suggéré un rôle important de XHRT1, la protéine HRT1 de xénope, dans le développement neural. Nous avons recherché les partenaires protéiques de XHRT1 par la technique du double-hybride afin de mieux comprendre son mécanisme d’action moléculaire dans la neurogenèse. Tout d’abord nous avons construit les outils appropriés pour l’élaboration du travail, à savoir, les clones de levures exprimant les appâts spécifiques des domaines de la protéine étudiée et la création d’une banque d’ADNc du xénope au stade de la neurulation. Ensuite, trois criblages ont été réalisés. Dans le premier cas, nous avons recherché les partenaires des domaines bHLH et Orange (bHLH-O). Le domaine bHLH est en effet responsable de la dimérisation de ce type de protéine. Le domaine Orange qui suit le domaine bHLH, pourrait participer dans le choix du partenaire d’hétérodimérisation. Nous avons isolé deux facteurs de type bHLH-Orange apparentés à HRT1, XHairy1 et XHairy2b et confirmé leur interaction avec XHRT1. Les domaines impliqués dans ces interactions sont les bHLH-O pour les trois facteurs. Ce même criblage nous a permis d’isoler un nouvel ADNc qui code une protéine sans domaine apparent connu actuellement. Nous avons montré que cette protéine reconnaissait spécifiquement le domaine Orange de HRT1 mais pas celui des autres facteurs de type bHLH-O. Elle a été baptisée BOIP pour Bc8 Orange Interacting Protein. Le rôle physiologique de cette interaction n’a pu être démontré. Nous avons établi que la protéine BOIP pouvait aussi s’homodimériser. Nous avons aussi déterminé son profil d’expression chez le xénope et la souris. Son transcrit est hautement présent dans les testicules adultes. La protéine pourrait donc jouer un rôle important dans la spermatogenèse. Les deux autres criblages, utilisant les domaines situés dans la partie C-terminale de XHRT1, ont apporté des nouveaux partenaires potentiels, mais ces interactions n’ont pu être confirmées dans un système indépendant. Enfin, en étudiant plus en détail les interactions entre XHRT1 et XHairy1 ou XHairy2b, nous avons mis à jour une possible fonction de spécificité dans le choix du partenaire dans la région C-terminale de HRT1. La formation de ces dimères pourrait jouer un rôle dans la formation du tube neural mais également dans d’autres différenciations tissulaires.
4

Implication de la protéase calpaïne 3 dans la régulation de l’activité transcriptionnelle du facteur MyoD au cours du processus de myogénèse

Stuelsatz, Pascal 12 December 2008 (has links)
Calpaïne 3 est une cystéine protéase retrouvée principalement au niveau du tissu musculaire. Cette enzyme joue un rôle clef dans le maintient de l’intégrité des fibres musculaires. En effet, des mutations au niveau du gène de calpaïne 3 ont été identifiées comme étant responsables d’une dystrophie musculaire autosomale récessive, la LGMD2A (Limb-girdle muscular dystrophy type 2A), caractérisée par une atrophie progressive des muscles des ceintures scapulaires et pelviennes. Nos travaux montrent que calpaïne 3 inhibe l’activité transcriptionnelle de MyoD. Ce facteur de transcription myogénique (MRF) joue un rôle central dans le contrôle de la myogenèse aussi bien au cours du développement embryonnaire que chez un individu adulte au cours du processus de régénération musculaire. Cette diminution d’activité transcriptionnelle a lieu aussi bien dans des cellules myoblastiques (C2C12) que fibroblastiques (C3H10T1/2). Par contre calpaïne 3 ne modifie pas l’activité transcriptionnelle des autres MRFs (Myf5, myogénine ou MRF4). Nous avons pu montrer que calpaïne 3 affecte spécifiquement l’activité transcriptionnelle de MyoD en entraînant une diminution de son niveau protéique (Western-blot, microscopie confocale), sans affecter son niveau d’ARNm (RT-QPCR). De plus, des expériences de détermination de la demi-vie protéique ont pu montrer que calpaïne 3 intervenait sur la dégradation protéique de MyoD. Des expériences sont en cours afin de déterminer si calpaïne 3 hydrolyse directement ou non le facteur MyoD. Nos travaux montrent que l’hydrolyse de MyoD induite par calpaïne 3 représente une voie parallèle à celle du système protéolytique protéasome ubiquitine-dépendant connu pour être impliqué dans sa dégradation. Nous avons également montré qu’une modification de l’expression de calpaïne 3, soit par surexpression soit par inhibition avec des siRNA spécifiques, entraîne une perturbation du processus de différenciation myogénique. Cet effet a été plus particulièrement étudié au sein d’une sous-population de cellules qui reste indifférenciée dans les cellules C2C12 induites en différenciation. Ces cellules, appelées cellules de réserve, s’apparentent aux cellules satellites intervenant dans la régénération musculaire. Nous avons montré que calpaïne 3 participe à la régulation du nombre des cellules de réserve au cours de la différenciation des cellules C2C12. Ce rôle de calpaïne 3 pourrait être lié à son intervention dans la dégradation du facteur MyoD. L’ensemble de ces résultats suggère ainsi que calpaïne 3 pourrait jouer un rôle in vivo dans le maintien d’un stock de cellules satellites au cours de la régénération musculaire. / Calpain 3 (CAPN3) is a calcium-dependent cysteine protease mainly expressed in skeletal muscle. This protease plays a key role in maintaining the integrity of muscular fibers. Indeed, mutations in CAPN3 encoding gene cause limb-girdle muscular dystrophy type 2A, an autosomal recessive muscular dystrophy characterized by progressive atrophy and weakness of the proximal limb muscles. Our work reveals an inhibitory effect of CAPN3 directed against the myogenic regulatory factor (MRF), MyoD. We have shown that CAPN3 inhibits the transcriptional activity of MyoD either in myoblastic cells (C2C12 cells) or in fibroblastic ones (C3H10T1/2 cells). On the contrary, no variation in the transcriptional activity of the other members of the MRFs family (Myf5, myogenin, or MRF4) was observed. CAPN3 affects the transcriptional activity of MyoD by decreasing the quantity of the endogenous protein MyoD (Western-blots, confocal microscopy experiments), without affecting its mRNA level (RT-QPCR). Moreover, half-life determination experiments showed that CAPN3 induce MyoD degradation acts on MyoD by a proteic degradation. Experiments are in progress to determine whether CAPN3 acts directly or not on MyoD. Furthermore, the inhibitory effect of CAPN3 on MyoD is independent of the ubiquitin-proteasome proteolytic pathway that is known to play a role during MyoD degradation. Indeed, MyoD mutants resistant to proteolytic degradation by the proteasome are sensitive to CAPN3 action. Interestingly, we have shown that modifications in CAPN3 expression, induced by overexpression or downregulation (siRNA), cause perturbations in myogenic differentiation. CAPN3 appears as a regulator of myogenic differentiation by modulating the quantity of MyoD available for progressing in differentiation. In addition, we have highlighted a potential role of CAPN3 in maintaining a pool of reserve cells along C2C12 cells differentiation. These cells share numbers of similarities with satellite cells present in the adult muscles. In conclusion, we have shown that CAPN3 acts as a regulatory molecule on myogenic differentiation, and probably have implications in the area of regeneration.
5

Mécanisme d'action de l'acide ascorbique sur la différenciation et le développement / Mechanism of Action of Ascorbic Acid on the Differentiation and Development

Rahman, Fryad 05 June 2014 (has links)
L'acide ascorbic acid (AA) a été considéré, pendant longtempss, comme une molecule devantêtre absorbée dans la nutrition, et prévenant le scorbut. Notre hypothèse, fondé sur desrésulats de notre groupe, suggèrent de nouvelles fonctions.Parmi celles-ci, nous nous sommes posé la question de l'AA molècule de signalling, durantl'embryogenèse et chez l'adulte, commme l'acide rétinoique (principe actif de la vitamine A)l'est. A cet effet, nous avons utilisé deux modèles cellulaires : des cellules souchesembryonnaires murines et des lignées de cellules souches/progénétrices adultes. Nous avonsainsi montré que l'AA stimule la différentiation de ces cellules en cellules musculairessquelettiques et en osteoblastes et inhibe l'adipogenèse et la neurogenèse. Cet effet passe parle transporteur de l'AA SVCT2 et implique la voie p38/MAPK. D'autre part, nous avonsdemontré que l'AA agit en compétition avec le RA, sur la neurogenèse et la myogenèse.Enfin, dans des cellules mésenchymateuses adultes, nous avons montré que l'AA inhibel'adipogenèse et stimule l'ostéogenèse. Cette action, comme chez l'embryon implique SVCT2et une modulation du pool du cAMP.En conclusion, l'AA pousse les cellules à se différencier en cellule musculaire squelettique eten ostéoblste et inhibie l'adipogenèse et la neurogenèse. / AA has been considered for a long time as a molecule involved in nutrition, to prevent scurvy. Our hypothesis is that AA could also be involved in development during embryogenesis, as well as in cell differentiation in adults. The aim of this study is to evaluate the potential implication of AA in cell differentiation, especially of mesenchyme cells, and to propose potential pathways that could be involved in these processes. Using murine ESCs we observed that AA markedly enhance the differentiation of ESCs toward muscle cells. Furthermore, we demonstrated that induction of myocytes by AA involves p38MAPK pathway and p-CREB. Moreover, we demonstrated that AA acts in mirror with retinoic acid. ESCs treated with RA mainly differentiate into neuronal cells, but AA compete, in a dosage dependent way to this differentiation. AA induces differentiation of ESCs into cardiac myocytes and could probably acts through p38MAPK pathway. Regarding adipocyte we revealed that SVCT2 expression significantly decreased as preadipocytes cells differentiate to adipocytes. This data suggests that mature adipocytes could not receive signals from AA. In addition, our results show that the expression of SVCT2 is increased in cells treated with AA and without IBMX. Moreover, we demonstrated that AA evolves in decreasing of cells containing lipids. Finally, we demonstrated that AA is not only involved in muscle differentiation of mesenchyme but is also involved in adipose tissue as a negative inducer. In conclusion, AA drives differentiation of ESCs toward muscle cells and osteoblast, incompetition with RA, and has a negative effect on adipogenesis and neurogenesis differentiation.
6

Rôle du métabolisme sur le devenir des cellules souches musculaires et l'homéostasie du muscle squelettique / Role of cell-autonomous regulation of metabolism on muscle stem cell fate and skeletal muscle homeostasis

Gsaier, Linda 22 October 2018 (has links)
Durant la régénération du muscle suite à une lésion, les cellules souches musculaires, aussi appelées les cellules satellites, quittent leur état de quiescence et s’activent. Elles pourront soit emprunter la voie de la myogenèse afin de former de nouvelles fibres musculaires, soit retourner à leur état de quiescence pour reformer la réserve de cellules souches mobilisable en cas de lésion ultérieure. La régulation du devenir de la cellule souche est modulée par de nombreuses voies de signalisation telles que la voie Wnt, la voie Notch ou la voie des TGFb. Cependant, rares sont les données concernant l’implication du métabolisme sur le devenir de la cellule souche. Pourtant il a été démontré que l’activation des cellules satellites est étroitement liée avec le métabolisme cellulaire, dont l’un des principaux acteurs est la protéine kinase AMPK. Ce complexe hétérotrimérique, composé de trois sous-unités a, b et g est responsable de l’équilibre entre consommation énergétique et production d’énergie au sein de la cellule. Grâce à la modulation de mTORC1, il a également été prouvé que l’AMPKa1 était responsable de la croissance cellulaire et de la prolifération des précurseurs myogéniques. A l’aide de différents modèles murins, de lignées primaires et de cellules satellites en sortie de tri, nous avons déterminé le rôle que pouvait jouer chacun des isoformes, AMPKa1 et AMPKa2 au sein de la cellule souche, sur le déroulement de la myogenèse adulte post- lésionnelle ainsi que sur l’homéostasie du muscle régénéré. Dans un premier temps nous avons démontré que la voie de signalisation AMPKa1-LDH permettait de réguler l’autorenouvellement des cellules satellites grâce au contrôle du métabolisme. En effet, au moment de l’entrée de la cellule dans la voie de la différenciation, la voie de l’AMPKa1 induit une diminution de l’activité de la LDH, permettant aux cellules d’adopter un métabolisme de phosphorylation oxydative répondant à leurs besoins énergétiques. Dans un second temps, nous avons démontré que l’isoforme AMPKa2, exprimé uniquement après l’entrée de la cellule dans la voie de la myogenèse, était responsable d’une modulation de la régénération musculaire et que son absence induisait un défaut de différenciation et un retard de maturation des fibres néoformées. Nos travaux nous ont ainsi permis de confirmer la place centrale de la protéine kinase AMPK dans la modulation via le métabolisme du devenir de la cellule souche musculaire dans un contexte de régénération du tissu musculaire squelettique dans un modèle murin / During muscle regeneration following injury, muscle stem cells, also called satellite cells,leave their quiescent state and activate. MuSCs are capable of both differentiating torepair muscle tissue after an injury and self-renewing to replenish the pool of stem cells.The regulation of their fate is modulated by several signaling pathways such as Wnt,Notch or TGFb pathway. However, there are few data concerning the involvement ofmetabolism in the fate of satellite cells. Yet it has been shown that the activation ofsatellite cells is closely related to cellular metabolism, which one of the main players isAMPK protein kinase. This heterotrimeric complex, composed of three subunits a, b andg, is responsible for the balance between energy consumption and energy productionwithin the cell. With the modulation of mTORC1, AMPKa1 has also been shown to be responsible for cell growth and proliferation of myogenic precursors. Using different mouse models, primary lines and sorted satellite cells, we determined the role that each isoform, AMPKa1 and AMPKa2, could play within the cell, on myogenesis and on the homeostasis of the regenerated muscle. First, we demonstrated that AMPKa1-LDH signaling pathway regulates the satellite cells self-renewal by controlling metabolism. Indeed, at the time of cell fate choice between commitment into terminal differentiation versus self-renewal, the AMPKa1 pathway induces a decrease in LDH activity, allowing cells to adopt an oxidative phosphorylation metabolism responding to their energy needs. In a second time, we demonstrated that the AMPKa2 isoform, expressed during myogenesis only after the induction of muscle cell differentiation, was responsible for a modulation of the muscular regeneration and that its absence induced a lack of differentiation and a delay in maturation of the new formed myofibers. Our work allowed us to confirm the central role of AMPK protein kinase in the regulation, by the modulation of metabolism, of muscle stem cell fate in a context of skeletal muscle regeneration in a mouse model
7

Étude de la régulation post-transcriptionnelle de l'expression des gènes par la protéine de liaison à l'ARN IMP-2 au cours de la myogenèse

Boudoukha, Selim 25 November 2011 (has links) (PDF)
Les rhabdomyosarcomes embryonnaires et aléolaires (RMS) appartiennent aux tumeurs des tissus mous les plus fréquentes chez les enfants dont elles représentent 2/3 des cas. Plusieurs données suggèrent que la dérégulation des cellules progénitrices du muscle squelettique pourrait jouer un rôle dans l'émergence des cellules de RMS qui ont aussi bien perdu le contrôle de la régulation de la prolifération cellulaire que la capacité à se différencier.Néanmoins les mécanismes de développement des RMS restent à caractériser. La famille des IMPs et notamment IMP-2, protéines liant les ARN, sont à la fois fortement exprimées dans le muscle en régénération in vivo mais aussi dans les cellules de RMS.Au cours de ma thèse, j'ai pu mettre en évidence le rôle d'IMP-2 dans la motilité des cellules de RMS et dans les cellules musculaires ainsi que dans le contrôle de l'intégrité du cytosquelette de microtubules (MTs) et dans le remodelage des adhésions focales. En effet, IMP-2 est impliqué à la fois dans la régulation de l'expression de MuRF-3, une protéine lié àla stabilisation des MTs et de Pinch-2, un important médiateur de l'adhésion cellulaire.
8

Implication de la protéine adaptatrice CKIP-1 dans le remodelage du cytosquelette d'actine et des membranes dans le muscle strié squelettique

Guiraud, Alexandre 26 September 2011 (has links) (PDF)
Les cellules des muscles striés squelettiques sont constituées d'éléments contractiles enveloppés par un réseau membranaire. La formation et l'entretien du muscle strié squelettique impliquent la migration des précurseurs myogéniques, la fusion des myoblastes en myotubes et la mise en place des triades. Ces évènements reposent sur le remodelage des membranes et du cytosquelette d'actine des cellules musculaires. Au cours de ma thèse, j'ai étudié le rôle de la protéine adaptatrice CKIP-1 (casein kinase 2 interacting protein-1) dans certaines étapes du développement du muscle strié squelettique. Après avoir identifié le complexe de nucléation de l'actine Arp (actin-related protein) 2/3 comme un nouvel interacteur de CKIP-1, nous avons montré que l'inhibition de l'expression de ckip-1 chez l'embryon de poisson zèbre altère la morphologie des myoblastes et empêche leur fusion du fait d'une désorganisation du cytosquelette d'actine. J'ai également montré que CKIP-1 n'est présente qu'au cours des étapes précoces de la myogenèse in vitro et in vivo chez la souris, puis elle est progressivement clivée. En outre, la modulation de l'expression de CKIP-1 provoque des défauts membranaires aussi bien in vitro qu'in vivo dans le muscle adulte de souris, suggérant que CKIP-1 est impliquée dans le remodelage des membranes. CKIP-1, par ses capacités à remodeler le cytosquelette d'actine et les membranes, pourrait intervenir dans plusieurs étapes de la vie du muscle : la migration, la fusion des myoblastes et la mise en place ou le maintien du réseau membranaire interne des cellules du muscle strié squelettique.
9

Amphioxus illuminates the origin of the vertebrates' head / Amphioxus illumine l'origine de la tête des vertébrés

Aldea, Daniel 20 September 2016 (has links)
L'apparition de nouvelles structures telles que la crête neurale, les placodes et le mésoderme crânien a été essentielle pour l'émergence de la tête des vertébrées. Fait intéressant, le mésoderme de la tête des vertébrés n'est pas segmenté alors qu'il est supposé que le mésoderme de l'ancêtre de tous les chordés était totalement segmenté. De même le corps du le céphalochordé amphioxus est entièrement segmenté. Des travaux menés par l'équipe ont montré le rôle central du signal FGF dans la formation des somites les plus antérieures chez l'amphioxus. Afin de mieux comprendre le rôle de ce signal pour la formation de ces somites, nous avons réalisé une étude transcriptomique comparative par RNA-seq. Cette analyse a mis en évidence plusieurs gènes que sont impliqués dans la somitogenèse et la myogenèse et sous le contrôle du signal FGF. Nous avons pu montrer grâce à des analyses fonctionnelles que ER81/Erm/PEA3 et Six1/2 ont un rôle majeur dans la formation des somites les plus antérieures chez l'amphioxus. Inversement, Pax3/7 est impliqué dans la formation des somites postérieures. Cette cascade de régulation est semblable à celle observée lors de la somitogenèse pour les muscles du tronc chez les vertébrés, mais diverge de la cascade de gènes contrôlant la formation des muscles de la tête chez les vertébrés. Tous ces résultats supportent l'hypothèse selon laquelle le changement de fonction du signal FGF durant le développement précoce a été une étape clé pour la perte des somites antérieures, libérant ainsi les contraintes dans la partie antérieure de l'embryon et permettant dans un second temps l'acquisition des muscles de la tête chez l'ancêtre commun des vertébrés. / A central question in Evo-Devo is to understand the origin of the vertebrates’ head. The appearance of new structures such as the neural crest, placodes and a cranial mesoderm were essential for the appearance of the head in the vertebrates. Interestingly, it is supposed that the ancestor of all chordates was completely segmented. Remarkably, the cephalochordate amphioxus is completely segmented in the full length of its body as the hypothetical ancestor of all chordates. Moreover, it has been showed that the FGF signal plays a central role in the formation of the anterior-most somites of amphioxus. Thus, in order to understand the downstream signaling pathway under the control of the FGF signal for the formation of the anterior-most somites in amphioxus, we performed a comparative RNA-seq analysis. This analysis revealed several vertebrates orthologues genes playing roles in somitogenesis or myogenesis and under the control of the FGF signal. Furthermore, functional analysis revealed that ER81/Erm/PEA3 and Six1/2 plays majors roles in the formation of the anterior-most somites in amphioxus. Conversely, Pax3/7 is involved in the formation of the posterior somites. This regulatory cascade resembles that for the control of trunk somitogenesis in vertebrates and diverges from the gene cascades controlling the formation of the vertebrate head muscles. Altogether, our results strengthen the hypothesis that changes in the FGF function during early development were instrumental for the loss of anterior somites, releasing developmental constraints in the anterior part of the embryo and allowing a secondary acquisition of head muscles in the ancestor of vertebrates.
10

Importance des glycoconjugués périphériques dans la différenciation myogénique : Rôle particulier de l'Ω (2,6) sialylation / Importance of peripheral glycoconjugates in myogenic differentiation : Special role of the (α2,6) sialylation

Bouchatal, Amel 08 April 2015 (has links)
Le développement du muscle squelettique est un processus complexe très finement régulé, qui inclus des étapes de prolifération de cellules progénitrices appelées myoblastes et des étapes de différenciation pour former des myotubes multi nucléés. La glycosylation est la principale modification post-traductionnelle des protéines. Son rôle dans divers processus biologiques et pathologiques est largement documenté, mais les mécanismes intimes de son implication lors du processus myogénique restent mal élucidés. Nous avons pris comme modèle cellulaire la lignée myoblastique C2C12 car elle est capable de mimer in vitro les étapes de prolifération et de différenciation de la cellule musculaire. En utilisant différentes lectines, nous montrons un changement de la sialylation périphérique en α2-6 des glycoconjugués de surface de la cellule C2C12 durant la différenciation myoblastique. En complément, nous avons analysé les N-glycannes des glycoprotéines par spectrométrie de masse et mesuré les niveaux d’expression des gènes des α2-6 sialyl-transférases et neuraminidases. Tous les résultats obtenus confirment bien que la différenciation des cellules C2C12 est accompagnée d’une diminution du taux de sialylation des glycoconjugués. Pour mieux comprendre l’implication de la sialylation en α2-6 dans la myogenèse, nous avons réalisé une étude fonctionnelle sur des cellules C2C12 qui sous-expriment St6gal1 du fait de l’introduction d’un shRNA spécifique. Les clones obtenus présentent de plus forts index de fusion et génèrent un plus grand nombre de myotubes qui, de surcroit, sont de grande taille. Ce phénotype est probablement dû à un engagement accru des cellules de réserve en différenciation. En effet, les clones sous-exprimant St6gal1 contiennent une plus petite proportion de cellules Pax7+, c’est-à-dire de cellules de réserve maintenues dans un état de quiescence.Ainsi, nos résultats montrent l’importante implication de la sialylation périphérique en α2-6 au cours de la différenciation myogénique. / Skeletal muscle development is a complex process highly regulated and which includes proliferation then differentiation of progenitor cells or myoblasts into multi-nucleated myotubes. Glycosylation is the main post-translational modification of proteins. Its role in various biological and pathological processes is well documented, but the precise mechanisms of its involvement during myogenesis are still poorly understood.We have used the C2C12 myoblast as a model cell line since it is able to mimic in vitro the steps of muscle cell proliferation and differentiation. Using different lectins we showed a change in the peripheral α2-6 sialylation of the cell surface glycoconjugates, during C2C12 differentiation. Besides, we also analyzed by mass spectrometry the N-glycans carried by glycoproteins and measured the expression levels of α2-6 sialyl-transferases and neuraminidases genes. All the results confirm that C2C12 differentiation is accompanied by a decrease of glycoconjugates sialylation. To highlight the involvement of α2-6 sialylation in myogenesis, we performed a functional study of C2C12 cells knockdown for St6gal1 by a specific shRNA. The generated clones exhibit a higher fusion index and generate more elongated myotubes. This phenotype probably results from an increased commitment of reserve cell in differentiation. Indeed, the clones knockdown for St6gal1 contain a lower proportion of Pax7+ cells, i.e. of reserve cells maintained in a quiescent state. Thus, our results show the significant involvement of the peripheral α2-6 sialylation during myogenic differentiation.

Page generated in 0.0424 seconds