• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

III-V/Si tandem solar cells : an inverted metamorphic approach using low temperature PECVD of c-Si(Ge) / Cellules solaires tandem III-V/Si : une approche inverse métamorphique par PECVD basse température de c-Si(Ge)

Hamon, Gwenaëlle 12 January 2018 (has links)
La limite théorique d’efficacité d’une cellule solaire simple jonction est de ~29 %. Afin de dépasser cette limite, une des moyens les plus prometteurs est de combiner le silicium avec des matériaux III-V. Alors que la plupart des solutions proposées dans la littérature proposent de faire croître directement le matériau III-V sur substrat silicium, ce travail présente une approche innovante de fabriquer ces cellules solaires tandem. Nous proposons une approche inverse métamorphique, où le silicium cristallin ou SiGe est cru directement sur le matériau III-V par PECVD. La faible température de dépôt (< 200 °C) diminue les problèmes de différence de dilatation thermique, et le fait de croître le matériau IV sur le matériau III-V élimine les problèmes de polarité.La réalisation de la cellule tandem finale en SiGe/AlGaAs passe par le développement et l’optimisation de plusieurs briques technologiques. Tout d’abord, nous développons l’épitaxie à 175 °C de Si(Ge) sur des substrats de Si (100) dans un réacteur de RF-PECVD industriel. La réalisation de cellules solaires à hétérojonction à partir de ce matériau Si(Ge) crû par PECVD montre que ses performances électriques s’avèrent prometteuses. Nous obtenons pour un absorbeur de 1.5 µm des Voc qui atteignent 0.57 V. L’incorporation de Ge permet d’augmenter le JSC de 15.4 % jusqu’à 16.6 A/cm2 pour Si0.72Ge0.28.En parallèle, la croissance de cellules solaires AlGaAs a été développée, ainsi que sa fabrication technologique. Nous obtenons une efficacité de 17.6 % pour une cellule simple en Al0.22Ga0.78As. Nous développons aussi des jonctions tunnel, parties essentielles d’une cellule tandem dans une configuration à deux terminaux. Nous développons notamment le dopage n du GaAs en utilisant le précurseur DIPTe, et obtenons des jonctions tunnel ayant des courants pic atteignant jusqu’à 3000 A/cm2, rejoignant ainsi les résultats de l’état de l’art.Ensuite, nous étudions l’hétéro-épitaxie de Si sur GaAs par PECVD. Le c-Si montre d’excellentes propriétés structurales. Les premiers stades de croissance sont étudiés par diffraction des rayons X avec rayonnement synchrotron. Nous trouvons un comportement inattendu : le Si est relâché dès les premiers nanomètres, mais sa maille est tétragonale. Alors que le GaAs a un paramètre de maille plus grand que le Si, le paramètre hors du plan (a⏊) du Si est plus élevé que son paramètre dans le plan (a//). Nous trouvons une forte corrélation entre cette tétragonalité et la présence d’hydrogène dans la couche de silicium. D’autre part, nous montrons que le plasma d’hydrogène présent lors du dépôt PECVD affecte les propriétés du GaAs : son dopage diminue d’environ un ordre de grandeur lorsque le GaAs est exposé au plasma H2, dû à la formation de complexes entre le H et le dopant (C, Te ou Si). Le dopage initial peut être retrouvé après un recuit à 350 °C.Enfin, nous étudions la dernière étape de fabrication de la cellule tandem : le collage. Nous avons pu reporter une cellule simple inversée en AlGaAs sur un substrat hôte (en Si), retirer le substrat GaAs et effectuer les étapes de microfabrication sur un substrat 2 pouces. Des couches épaisses de Si (>1 µm) ont été crues avec succès sur une cellule AlGaAs inversée suivie d’une jonction tunnel. Le collage de cette cellule tandem, et la processus de fabrication technologique du dispositif final sont ensuite étudiés, afin de pouvoir caractériser électriquement la première cellule solaire tandem fabriquée par croissance inverse métamorphique de Si sur III-V. / Combining Silicon with III-V materials represents a promising pathway to overcome the ≈29% efficiency limit of a single c-Si solar cell. While the standard approach is to grow III-V materials on Si, this work deals with an innovative way of fabricating tandem solar cells. We use an inverted metamorphic approach in which crystalline silicon or SiGe is directly grown on III-V materials by PECVD. The low temperature of this process (<200 °C) reduces the usual thermal expansion problems, and growing the group IV material on the III-V prevents polarity issues.The realization of the final tandem solar cell made of SiGe/AlGaAs requires the development and optimization of various building blocks. First, we develop the epitaxy at 175°C of Si(Ge) on (100) Si substrates in an industrial standard RF-PECVD reactor. We prove the promising electrical performances of such grown Si(Ge) by realizing PIN heterojunction solar cells with 1.5µm epitaxial absorber leading to a Voc up to 0.57 V. We show that the incorporation of Ge in the layer increases the Jsc from 15.4 up to 16.6 A/cm2 (SiGe28%).Meanwhile, we develop the growth of AlGaAs solar cells by MOVPE and its process flow. We reach an efficiency of 17.6 % for a single Al0.22GaAs solar cell. We then develop the tunnel junction (TJ), essential part of a tandem solar cell with 2-terminal integration. We develop the growth of n-doped GaAs with DIPTe precursor to fabricate TJs with peak tunneling currents up to 3000 A/cm2, reaching state-of-the art TJs.Then, the hetero-epitaxy of Si on GaAs by PECVD is studied. c-Si exhibits excellent structural properties, and the first stages of the growth are investigated by X-ray diffraction with synchrotron beam. We find an unexpected behavior: the grown Si is fully relaxed, but tetragonal. While the GaAs lattice parameter is higher than silicon one, we find a higher out-of-plane Si parameter (a⏊) than in-plane (a//), contradicting the common rules of hetero-epitaxy. We find a strong correlation between this tetragonal behavior and the presence of hydrogen in the Si layer. We furthermore show that hydrogen also plays a strong role in GaAs: the doping level of GaAs is decreased by one order of magnitude when exposed to a H2 plasma, due to the formation of complexes between H and the dopants (C, Te, Si). This behavior can be recovered after annealing at 350°C.Finally, the last step of device fabrication is studied: the bonding. We successfully bonded an inverted AlGaAs cell, removed it from its substrate, and processed a full 2” wafer. We succeeded in growing our first tandem solar cells by growing thick layers (>1 µm) of Si on an inverted AlGaAs solar cells followed by a TJ. The bonding and process of this final device is then performed, leading, as a next step, to the electrical measurement of the very first tandem solar cell grown by inverted metamorphic growth of Si on III-V.
2

InP based tandem solar cells integrated onto Si substrates by heteroepitaxial MOVPE / Cellules solaires tandem à base de InP intégrées sur substrats Si par hétéro-épitaxie MOVPE

Soresi, Stefano 01 October 2018 (has links)
Cette thèse s’intéresse à l'intégration sur Si de cellules solaires III-V à simple et double jonction par épitaxie en phase vapeur aux organo-métalliques (MOVPE). Les dispositifs photovoltaïques ont été réalisés avec des matériaux accordés sur InP. L'objectif était d'abord d'obtenir des dispositifs performants sur des substrats InP, puis de les intégrer sur une structure avec un paramètre de maille différent, en évaluant les effets sur les performances photovoltaïques. Ceci a nécessité la réalisation et l'optimisation de plusieurs étapes de fabrication.Tout d'abord, nous avons réalisé une cellule InP à simple jonction, qui peut correspondre à la cellule top dans notre structure tandem. Cela était également nécessaire pour mettre en place un processus de fabrication pour toutes les cellules suivantes. Les conditions de croissance ont été optimisées en profitant des techniques de caractérisation des matériaux telles que la XRD, l’analyse C-V et le SIMS. En optimisant les épaisseurs et les niveaux de dopage des différentes couches du dispositif, ainsi que le procédé en salle blanche, nous avons obtenu une efficacité de conversion de 12.9%, avec un FF de 84.3%. Nous avons démontré que l'utilisation d'une couche fenêtre en AlInAs au lieu de l’InP peut augmenter l'efficacité à 13.5%, malgré une légère réduction du FF (81.4%). La même procédure a ensuite été étendue à la réalisation d'une cellule solaire InGaAs comme cellule bottom du dispositif tandem. Nous avons obtenu un rendement de 11.4% et un FF de 74.5%.En parallèle, des jonctions tunnels capables de relier électriquement les deux sous-cellules dans un dispositif tandem ont été étudiées. En particulier, nous avons concentré notre attention sur les conditions de croissance de l'anode de la jonction, qui a été fabriquée en AlInAs et dopée avec le précurseur CBr4. Les réactions chimiques d’un tel précurseur avec le précurseur de l’Al et l’In nécessitaient une importante réduction de la température de croissance à 540 °C. En déterminant les effets des flux sur la composition et les niveaux de dopage du composé, nous avons obtenu un dopage élevé de +4x1019 cm-3. En obtenant un niveau équivalent pour la cathode InP:S, nous avons réalisé un dispositif présentant un Jp de 1570 A/cm2, capable de fonctionner dans des conditions de concentration solaire élevée. En combinant finalement les trois dispositifs présentés dans une cellule tandem, nous avons pu obtenir un rendement global de conversion de 18.3%, avec un FF de 83.9%.Un template approprié pour l'intégration III-V/Si a été déterminé en testant plusieurs possibilités fournies par différents partenaires. Les caractérisations XRD et AFM ont démontré qu'un template InP/GaP/Si fourni par la société NAsP était la meilleure option. Ceci a été confirmé par la croissance d'une cellule InP à simple jonction sur le template. La techno sur un substrat Si a été rendu possible en déplaçant le contact arrière de la cellule sur la face avant du dispositif, ce qui a nécessité la mise au point d'un ensemble approprié de masques photolithographiques. La réussite de l’intégration des cellules solaires III-V sur Si a été confirmée par le photocourant produit. Celui-ci correspond à environ 60% de la valeur obtenue sur les substrats InP. De plus, les caractéristiques J-V mesurées donnent une tendance de type diode, démontrant la validité de l'approche proposée. / This thesis focuses on III-V/Si integration of single- and dual-junction solar cells by Metalorganic Vapor Phase Epitaxy (MOVPE). The photovoltaic devices were made with materials lattice matched to InP. The goal was to firstly obtain efficient devices on InP substrates and then to integrate them on a structure with a different lattice parameter, by evaluating the effects on the photovoltaic performances. This required the realization and the optimization of several manufacturing steps.Firstly, we realized an InP single junction device, which may correspond to the top cell of our tandem structure. This was also necessary to set up a manufacturing process for all the next cells. The growth conditions were optimized by taking advantage of material characterization techniques such as XRD, C-V profiling and SIMS. By optimizing thicknesses and doping levels of the various layers of the device, as well as the clean room process, we obtained a conversion efficiency of 12.9%, with a FF of 84.3%. We demonstrated that the use of an AlInAs window layer instead of InP may increase the efficiency to 13.5%, despite a slight reduction in FF (81.4%). The same procedure was then extended to the realization of an InGaAs solar cell as the bottom component of the tandem device. We obtained an efficiency of 11.4% and a FF of 74.5%.In parallel, tunnel junctions able to electrically connect the two subcells in a tandem device were studied. In particular, we focused our attention on the growth conditions of the junction anode, which was made in AlInAs and doped with CBr4 precursor. The particular chemical interactions that such a precursor has with Al precursor and In required a relevant reduction of growth temperature to 540 °C. By determining the effects of the flows on composition and doping levels of the compound, we obtained a high doping of +4x1019 cm-3. By obtaining an equivalent level for the InP:S cathode, we realized a device presenting a Jp of 1570 A/cm2, able to work under high solar concentration conditions. By finally combining the three presented devices in a tandem cell, we could obtain an overall conversion efficiency of 18.3%, with a FF of 83.9%.A proper template for III-V/Si integration was determined by testing several possibilities provided by different partners. XRD and AFM characterizations demonstrated that an InP/GaP/Si template provided by NAsP Company was the best option. This was confirmed by the growth of an InP single junction cell over the template. The processing over a Si substrate was made possible by shifting the rear contact of the cell on the front side of the device, which required the development of a proper set of photolithographic masks. The successful integration of the III-V solar cells on Si was confirmed by the relevant produced photocurrent. This corresponds to around 60% of the value obtained on InP substrates. Furthermore, the measured J-V characteristics show a diode-like trend, which demonstrates the validity of the proposed approach.

Page generated in 0.346 seconds