• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude du rôle de l’ARN Tuna dans le contexte de pluripotence des cellules souches

Héricher, Gaultier 25 January 2021 (has links)
Le développement embryonnaire est un processus complexe finement régulé spatio-temporellement par de nombreux acteurs, qu’ils soient ADN, ARN ou protéines. De récents résultats suggèrent un rôle clef dans le développement et les maladies pour une sous-catégorie des ARNs impliqués dans ces mécanismes, les longs ARNs non-codants (lncRNAs). Caractérisés par leur incapacité à produire des protéines, ils sont difficiles à étudier par leur manque de conservation en séquence et leur expression tissu-spécifique. Ici, nous étudions un lncRNA conservé, Tuna (Tcl1 Upstream Neuron-Associated lncRNA), nécessaire au maintien de l’état pluripotent des cellules souches et essentiel à leur différenciation en neurones. Toutefois, les mécanismes dans lesquels cet ARN est impliqué restent inconnus. Pour y répondre, nous avons analysé des données de séquençage d’ARN de différenciation neuronale d’ESCs murines. Nous avons identifié deux nouvelles isoformes spécifiquement exprimées dans les ESCs, sht.Tuna et alt.Tuna. Cette dernière est le résultat de l’épissage alternatif de l’exon 1 de Tuna. Cet épissage alternatif est également observé chez l’humain, démontrant une conservation du traitement de l’ARN entre la souris et l’Homme. Ces deux isoformes sont plus courtes d’environ 1,5kb à l’extrémité 3’ que le transcrit prédit de Tuna (full.Tuna). En effet, l’isoforme full. Tuna n’a pas pu être détectée dans les ESCs, et la surexpression de sht.Tuna a permis d’améliorer la reprogrammation vers l’état pluripotent. Ceci suggère que le rôle de Tuna est mécanistiquement différent dans les ESCs et les neurones. D’autre part, Tuna présente une région hautement conservée (~200bp) contenant un potentiel cadre de lecture pour un peptide de 48 acides aminés, détectable par surexpression de constructions tagguées FLAG. La mutation du codon AUG de cette séquence codante a abrogé l’effet de l’ARN sur la reprogrammation. Ceci implique un rôle du peptide dans l’acquisition de la pluripotence. Par ailleurs, Tuna a été détecté dans les fractions poly-ribosomales et cytoplasmiques d’ARN, supportant son éventuel potentiel codant. Ensemble, ces résultats démontrent que l’épissage alternatif et le potentiel codant d’un locus propre à un lncRNA est complexe et que cet ARN pourrait avoir de multiples fonctions dépendantes de l’état cellulaire / Embryonic development is a complex process finely regulated in time and place by numerous actors such as DNA, RNA, and proteins. Emerging evidence suggests a key role in development and disease for a subcategory of RNAs implicated in those mechanisms, the long non-coding RNAs (lncRNAs). Characterized by their incapacity to produce proteins, they have proven to be challenging to study due to the lack of sequence conservation and their tissue-specific expression. Here, we focus on a conserved lncRNA, Tuna (Tcl1 Upstream Neuron-Associated lncRNA), that is required for maintaining embryonic stem cells (ESCs) in an undifferentiated state but is also essential for their differentiation towards a neuronal cell fate. However, the mechanism behind this dual role remains largely unknown. To address this, we analyzed available RNA-seq data on mouse ESC differentiation towards neurons. We identified two novel isoforms specifically expressed in ESCs, sht.Tuna and alt.Tuna. The latter isoform was the result of alternative splicing of the exon 1 of Tuna. This alternative splicing was also observed in human ESCs demonstrating a conserved processing of the RNA between mouse and human cells. Both new isoforms were ~1.5kb shorter at the 3'-end than the predicted full transcript of Tuna (full.Tuna). In fact, we failed to detect the full.Tuna isoform in ESCs, and overexpression of sht.Tuna isoform enhanced reprogramming to a pluripotent stem cell state. This suggests that the role of Tuna is mechanistically different in ESCs than in neurons. Besides, Tuna also contains a highly conserved region (~200bp) harboring a predicted 48-amino-acids coding sequence that is detectable upon overexpression if FLAG-tagged. Mutating the start codon of this peptide's coding sequence abrogated the enhanced reprogramming effect. This infers a role for the peptide in the acquisition of a pluripotent state. Moreover, Tuna was detected in poly-ribosomal and cytoplasmic RNA fractions further supporting a peptide coding potential. Taken together, our results demonstrate that alternative splicing and coding potential of a particular lncRNA locus is complex and that a lncRNA may have multiple functionality depending on cell state.
2

Modèles in-vitro de la dystrophie myotonique de Steinert : les cellules souches induites à la pluripotence

Carbonell Bornay, Antoine 20 April 2018 (has links)
La maladie de Steinert est la plus fréquente des dystrophies musculaires de l’adulte. Les mécanismes moléculaires responsables de cette maladie sont en grande partie inconnus. Afin de faire progresser les recherches sur cette maladie, il est essentiel de pouvoir disposer de modèles cellulaires in vitro possédant une grande capacité proliférative. Il est également important de pouvoir disposer de modèles cellulaires non seulement du muscle squelettique, mais aussi du cerveau et du cœur, deux organes touchés par la maladie. La reprogrammation de cellules somatiques humaines en cellules souches induites à la pluripotence (iPS) est une nouvelle technique apparue en 2007 (Yamanaka et al, 2007). Mon projet de recherche a porté sur la reprogrammation de fibroblastes humains DM1 en iPS DM1. Nous avons été en mesure de dériver plusieurs lignées d’iPS à partir de fibroblastes de patients atteints de la DM1. Nous avons été en mesure de réaliser une caractérisation préliminaire d’une des lignées attestant le caractère pluripotent des cellules souches obtenues. Nous avons également été capables de générer des précurseurs de neurones, à partir de ces iPS, exprimant les marqueurs MAP2 et TAU. Les résultats obtenus nous permettent de penser que l’objectif initial de reprogrammer des fibroblastes de patients en iPS a été atteint. / Steinert disease is the most common adult muscular dystrophy. Unfortunately, the molecular mechanisms of that disease still misunderstood. To increase the knowledge’s, it is essential to have some cellular models available with a good proliferation capacity. It is also important to be able to establish in vitro models of heart and brain, which are also affected by the disease. Since 2007, it is possible to turn somatic cells into pluripotent stem cells. My project was to differentiate human fibroblasts of patients into induced pluripotent stem cells. We were able to reach that goal. A preliminary characterization was done to show the pluripotency of those cells. We were also able to differentiate those cells into neurons precursors expressing MAP2 and TAU proteins. Those results allow us to think that the original goal of establish induced pluripotent stem cells from Steinert patients is reach.
3

Obtention de cellules souches humaines induites à la pluripotence à partir de cellules d'urine et leur différenciation neuronale

Hoarau, Priscilla 24 April 2018 (has links)
Les cellules souches humaines induites à la pluripotence (hiPSCs) ont été conçues pour la première fois en 2007 par l’équipe du Docteur Yamanaka, au Japon. Ce sont des cellules somatiques reprogrammées par un virus permettant, par exemple, la différenciation neuronale à des fins d'étude de maladies neuro-développementales telle que la Schizophrénie. Le prélèvement des cellules somatiques se fait aujourd'hui majoritairement par des méthodes assez invasives, notamment les biopsies de peau ou prélèvements sanguins. Ceci peut représenter un frein à leur utilisation notamment chez les enfants et surtout les enfants malades. La différenciation neuronale privilégiée est la voie dopaminergique (DA) car c'est ce type cellulaire qui est principalement atteint chez les schizophrènes. C'est pourquoi on priorise pour ce projet l'utilisation de cellules contenues dans l'urine, qui seront reprogrammées via un virus non-intégratif, le virus de Sendaï (SeV). La différenciation neuronale nous permettra d'obtenir des neurones DA fonctionnels, caractérisés par électrophysiologie. Les expériences ont montré une très grande efficacité de reprogrammation cellulaire au niveau des cellules d'urine, ainsi qu'un grand potentiel de différenciation neuronale, malgré quelques différences observées entre les lignées saines et schizophréniques. Grâce à ce projet, la réalisation d'un modèle cellulaire pour la Schizophrénie a pu être établie. Les différences notées entre les lignées pendant la différenciation ouvrent une nouvelle voie pour approfondir l'étude de la maladie au niveau cellulaire et moléculaire. / Human Induced Pluripotent Stem Cells (hiPSCs) were conceived for the first time in 2007 in Japan, by Doctor Yamanaka’s team. These are somatic cells reprogrammed thanks to a retrovirus allowing, for example, neuronal differentiation for the purpose of neurodevelopmental disorders studies such as Schizophrenia. Today, the removal of somatic cells is mainly made by enough invasive methods, including skin and blood biopsies. This can represent a brake in their use predominantly children, mainly sick children. The preferred neuronal differentiation is the dopaminergic (DA) way because it's the mostly cell type affected in schizophrenics. That's why we prioritize the use of urine cells for this project, reprogrammed via a non integrative virus, the Sendai virus (SeV). The neuronal differentiation enables us to get functional DA neurons characterized by electrophysiology. Experimentations show a huge efficiency of urine cells reprogramming as well as a great potential of neuronal differentiation despite some distinctions between the two lines. Thanks to this project, the achievement of a cellular model for Schizophrenia could be established. The differences noticed between the two lines during the differentiation open up a new way to make cellular and molecular studies of this disease deeper.
4

Expression de la dystrophine humaine dans le Tibialis anterior de souris Rag/mdx suite à une greffe de cellules myogéniques dérivées d'hiPSCs dystrophiques et corrigées génétiquement

Gravel, William-Édouard 23 April 2018 (has links)
Les cellules souches embryonnaires humaines (hESCs) et les cellules souches pluripotentes induites humaines (hiPSCs) ont démontré leur capacité d'auto-renouvellement et peuvent potentiellement se différencier en tous les types de lignées cellulaires. Elles représentent donc une source illimitée de cellules pour le développement de thérapies curatives pour les maladies dégénératives, telles que la dystrophie musculaire de Duchenne (DMD). Cette maladie héréditaire est le résultat de diverses mutations dans le gène de la dystrophine. Ces mutations engendrent un changement dans le cadre de lecture du gène de la dystrophine, abolissant ainsi son expression. Elle se caractérise cliniquement par une progression rapide de la dégénérescence musculaire qui débute tôt dans la vie. Les hiPSCs dystrophiques ont été corrigées par notre collaborateur, le Dr. Hotta, en insérant une paire de bases dans l’exon 45 avec les Transcription Activator-Like Effector Nucleases (TALENs) pour rétablir le cadre de lecture du gène. Notre laboratoire a mis au point une procédure en deux étapes pour différencier des hiPSCs en cellules myogéniques. Nous avons d'abord utilisé un milieu de culture myogénique préparé spécialement dans le laboratoire (appelé MB1) pour promouvoir la différenciation des hiPSCs en cellules de type mésenchymateuses. Nous les avons ensuite transduites avec un lentivirus exprimant MyoD, un facteur de transcription myogénique sous le contrôle du promoteur synthétique CAG, afin d'induire leur différenciation en myoblastes. Ces myoblastes modifiés ont été greffés dans le muscle Tibialis anterior d’une souris Rag/mdx, un animal immunodéficient et dystrophique, et ont par la suite fusionné avec les fibres musculaires existantes. La présence de la protéine dystrophine humaine a été confirmée par immunohistofluorescence dans les muscles greffés avec les cellules corrigées génétiquement ainsi que dans le contrôle positif réalisé avec des myoblastes provenant d'un donneur sain. La thérapie cellulaire homotypique à partir de cellules corrigées génétiquement présente de grands avantages pour les patients souffrant de DMD, car elle permet l’expression d’un gène capable de produire une dystrophine fonctionnelle dans les fibres musculaires, de diminuer les risques de rejet de la greffe et d’accroitre la capacité de régénération du muscle et la force musculaire. / Human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) have shown self-renewal capacity and can potentially differentiate into all types of cell lineages. They represent an unlimited source of cells for the therapy of degenerative diseases, such as Duchenne Muscular Dystrophy (DMD), a disease characterized by a rapid degeneration of muscles that starts early in life. Dystrophic hiPSCs have been corrected by our collaborator, Dr. Hotta, by inserting of a single base pair in the exon 45 with Transcription Activator-Like Effector Nucleases (TALENs) to restore the reading frame of the gene. Our laboratory has developed a two-step procedure to differentiate hiPSCs into myogenic cells. We first used a myogenic culture medium especially developped in the laboratory (called MB-1) to promote the differentiation of hiPSCs into mesenchymal-like precursor cells. We next transduced them with a lentivirus expressing the myogenic transcription factor MyoD under the control of the composite CAG promoter, in order to induce their differentiation into myoblasts. Transduced cells have been grafted in the Tibialis anterior muscle of Rag/mdx mice where they fused with existing muscle fibers. The presence of the human dystrophin protein has been confirmed by immunohistofluorescence in muscles grafted with the genetically corrected cells and in a control graft with myoblasts of a healthy donor. Cell therapy shows great promises for DMD patients since it allows the expression of a normal gene capable of producing a functional dystrophin in muscle fibers and increase the regenerative capacity of the muscle and the muscle strength.
5

Thérapie génique ex vivo de la dystrophie musculaire de Duchenne à l'aide de cellules souches pluripotentes induites

Maltais, Chantale 20 April 2018 (has links)
La dystrophie musculaire de Duchenne (DMD) est une myopathie héréditaire due à l'absence de dystrophine. Parmi les thérapies possibles, la greffe autologue de myoblastes dérivés de cellules souches pluripotentes induites (hiPSCs) provenant du patient dystrophique, préalablement corrigés génétiquement, est envisageable. Lors de la première partie de ma recherche, j'ai transplanté des hiPSCs de patient DMD différenciés en myoblastes chez la souris Rag/mdx. Ces cellules avaient été corrigées génétiquement à l'aide d'un vecteur lentiviral codant pour la micro-dystrophine, une dystrophine tronquée, mais toujours fonctionnelle. Mes résultats ont démontré l'expression de cette micro-dystrophine dans certaines fibres hybrides. Cependant, le protocole de différenciation des hiPSCs en myoblastes doit être amélioré. La deuxième partie de mon projet consistait donc à induire la myogenèse à l’aide de protéines recombinantes. Pour cela, des facteurs de transcription régulateurs de la myogenèse, fusionnés à un peptide de pénétration cellulaire, ont été produits et purifiés d’un système bactérien. Leur pénétration dans des cellules mésenchymateuses a été observée in vitro et leurs effets sur les cellules sont en cours d’étude. Lorsque ces approches thérapeutiques seront mises au point, elles pourraient être appliquées cliniquement pour traiter des patients dystrophiques. / Duchenne muscular dystrophy (DMD) is a hereditary myopathy due to the absence of dystrophin. Among the possible therapies, there is the autologous transplantation of genetically corrected myoblasts derived from human induced pluripotent stem cells (hiPSCs) of a dystrophic patient. In the first part of my research project, I have transplanted myoblasts differentiated from iPSCs of a DMD patient in the Rag/mdx mouse. These cells had been previously genetically corrected with a lentiviral vector coding for micro-dystrophin, a functional truncated version of dystrophin. The results demonstrated the expression of this micro-dystrophin in some of the hybrid fibers. However, in order to increase the graft success, the protocol of differentiation of hiPSCs in myoblasts must be improved. The second part of my project was the induction of myogenesis from hiPSCs using recombinant proteins. To accomplish this, myogenic transcription factors fused with a cell penetrating peptide were produced and purified from the bacterial system. Their capacity to enter into mesenchymal-like cells in vitro was observed and their effects on the cells are currently under study. Once optimized, these therapeutic approaches could be clinically applied to treat dystrophic patients.
6

La cartographie optique des cellules souches induites à la pluripotence différenciées en cardiomyocytes : une étude sur l'implication cardiaque de la dystrophie myotonique de type 1

Djemai, Mohammed 19 January 2022 (has links)
La cartographie optique est une technique qui permet de mesurer l'activité électrique transmembranaire dans les tissus excitables avec une haute résolution spatiale et temporelle et d'une manière non invasive en utilisant des sondes fluorescentes sensibles au potentiel membranaire. Récemment, les cellules souches pluripotentes induites (hiPSC) ont été introduites et adoptées par plusieurs laboratoires comme un modèle puissant pour l'étude des maladies affectant des tissus inaccessibles. La dystrophie myotonique de type 1 (DM1) est une maladie héréditaire neuromusculaire incurable qui touche plusieurs organes, notamment le cœur. Dans ce projet de maitrise, des monocouches de hiPSC dérivées en cardiomyocytes ont été générées à partir d'un individu sain (CTRL), un patient DM1-1300 et un patient DM1-300, afin d'étudier les manifestations de la DM1 au niveau cardiaque. Les monocouches de hiPSC-CM ont été marquées par une sonde sensible au voltage (di-4-ANEPPS). Le potentiel membranaire a été ensuite cartographié à l'aide d'un macroscope à épifluorescence de haute résolution spatiale et temporelle. Des cartes isochrones de l'activation ont été générées. Les durées des potentiels d'action (DPA₉₀, ₅₀), les vitesses de conduction (CV) ainsi que le temps de dépolarisation (TRise) ont été mesurés. De plus, plusieurs tests pharmacologiques ont été effectués afin de valider nos résultats obtenus par notre système d'imagerie, ainsi que la fiabilité de notre modèle in vitro. Nous avons produit un tissu cardiaque qui a démontré les mêmes caractéristiques que les cardiomyocytes natifs à différentes drogues. Ce modèle in vitro s'est avéré un bon candidat pour de futures études sur les propriétés électrophysiologiques et pharmacologiques des cellules cardiaques. L'étude effectuée sur la DM1 a révélé une réduction de la CV chez les patients DM1-1300, ainsi qu'une augmentation des TRise comparativement au CTRL. La DM1 altère l'excitabilité des cardiomyocytes, probablement en affectant le fonctionnement des différents canaux ioniques et jonctions intercellulaires indispensables à la conduction cardiaque. / Optical mapping is an imaging technique widely used to measure membrane potential of excitable tissues with high spatial and temporal resolution and in a non-invasive manner using voltage sensitive dyes (VSD). Recently, human induced pluripotent stem cells (hiPSCs) have been introduced and adopted by several laboratories as a powerful model to study many diseases affecting inaccessible tissues. Myotonic dystrophy type 1 (DM1) is an incurable hereditary neuromuscular disease that affects several organs, including the heart. In this project, monolayers of hiPSC-derived cardiomyocytes were generated from a healthy individual (CTRL) and from two DM1 patients (DM1-1300 and DM1-300), in order to study the cardiac manifestations of DM1. The hiPSC-CM monolayers were loaded with the VSD di-4-ANEPPS, and the membrane potential was then mapped using a high spatial and temporal resolution epifluorescence macroscope. Isochronal activation maps were generated. The action potential durations (APD₉₀, ₅₀), the conduction velocities (CV) as well as the depolarization rise times (TRise) were measured. In addition, several known drugs were tested in order to validate the results obtained using our optical mapping system, as well as the reliability of our in vitro model. We were able to produce a cardiac tissue that has demonstrated the same characteristics as native cardiomyocytes to different drug tests. This in vitro model has proven to be an excellent candidate for future studies on the electrophysiological and pharmacological properties of the heart. The optical mapping of DM1 cardiomyocytes monolayers has revealed a reduction of CV in hiPSC-CM DM1-1300, as well as a prolonged TRise compared to CTRL. DM1 appears to alter the excitability of cardiomyocytes probably by affecting the functioning of various ion channels and gap junctions involved in the cardiac conduction.

Page generated in 0.1425 seconds