• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The use of fluorescence to probe the morphology changes in complex polymers

Le Grange, Marehette Suzanne 04 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Impact polypropylene copolymers (IPC) are commercially used in a variety of applications. They are very complex materials and extensive studies have been conducted to understand the relationship between their chemical structure, morphology and impact properties. The distribution of ethylene propylene rubber (EPR) within IPC has drawn much attention but visualization of the morphology is difficult. In this study a fluorescent marker was used to probe the distribution of EPR within the crystalline and semi-crystalline fraction. The EPR was removed from a commercial IPC and labelled with a fluorescent marker. In this study a method utilizing the hydrophilic nature of cellulose nanowhiskers (CNW) was developed to label the EPR. CNW were labelled with fluorescein-5’-isothiocyanate (FITC) and rhodamine B (RhB) using a one-step procedure. The labelled CNW were incorporated into the EPR by means of sonication. The mobility of the labelled CNW within the EPR film was investigated by confocal fluorescence microscopy (CFM), and showed that the labelled whiskers did not move within the EPR, thus substantiating the validity of this approach. The labelled EPR was recombined with the crystalline fraction by means of injection moulding and was analysed by CFM, and the distribution of the labelled EPR was evaluated. Confocal fluorescence microscopy showed an even distribution of the labelled rubber throughout the injection moulded sample. The miscibility of two EPRs within the IPC matrix in the melt was also investigated using this technique. CFM showed that the technique has promise to prove miscibility or the lack thereof when chemically similar materials are combined in the presence of morphologically different matrix materials. / AFRIKAANSE OPSOMMING: Impak polipropileen kopolimere (IPK) word kommersieel gebruik in ‘n wye reeks produkte. Die samestelling van hierdie kopolimere is baie ingewikkeld en uitgebreide studies is al gedoen om hul chemiese samestelling op molekulêre vlak te verstaan. Baie studies met betrekking tot die verspreiding van die etileen-propileen rubber (EPR) binne in hierdie impak polipropileen kopolimere is al gedoen, maar visualisering van die morfologie is moeilik en beperk. Hierdie kennis kan bydra tot die verbetering van hul chemiese eienskappe en toepassings. In hierdie studie word ʼn fluorosserende merker gebruik om die verspreiding van die EPR binne die kristallyne en semikristallyne fraksie te ondersoek. Die EPR is verwyder vanuit 'n kommersiële IPK en is gemerk met 'n fluoresserende merker. In hierdie studie is 'n metode ontwikkel om die EPR te merk deur gebruik te maak van die hidrofiliese eienskap van sellulose nanovesels (SNV). Die SNV is gemerk met fluoressien-5'-isotiosianaat (FITC) en rhodamien B (RhB) met behulp van 'n eenstap proses. Die gemerkte SNV is deur middel van sonikasie in die EPR versprei. Die mobiliteit van die gemerkte SNV binne-in die EPR film is ondersoek deur gefokusde fluoressensie mikroskopie (GFM) en het getoon dat die gemerkte vesels nie binne die EPR beweeg nie. Dit bevestig dus die geldigheid van hierdie benadering. Die gemerkte EPR is herkombineer met die kristallyne fraksie deur middel van spuitgiet en is geanaliseer deur GFM en die verspreiding van die gemerkte EPR is geëvalueer. GFM het 'n eweredige verspreiding van die gemerkte rubber regdeur die moster wat gespuitgiet is getoon. Die mengbaarheid van twee EPRs binne-in die IPK matriks is ook ondersoek deur gebruik te maak van hierdie tegniek. GFM het getoon dat hierdie tegniek waarde inhou om te bewys dat twee produkte mengbaar is of nie, al word hulle geherkombineer word met ‘n matriks wat morfologiese van hul verskil.
2

Self-Assembly of Surface-Acylated Cellulose Nanowhiskers

Liu, Huan 26 September 2021 (has links)
No description available.
3

Development of Biomass-Based Cellulose Nanowhiskers and its Application as Catalyst Support in Converting Syngas to Biofuels

Shi, Xiaodan 14 December 2013 (has links)
The objectives of this research were to develop the best methods for cellulose nanowhiskers (CNWs) preparation from raw biomass materials and the feasibility to perform CNWs as Fe3+ catalyst support in converting syngas to biofuels. Raw kenaf bast and switchgrass were initially pretreated with dilute NaOH followed by dilute H2SO4. High yields of alpha-cellulose were obtained. Hemicellulose, ash, and most lignin were removed during pretreatment. Preparation of CNWs after pretreatment was then conducted via H2SO4 hydrolysis. The most efficient hydrolysis condition was determined as H2SO4 concentration through orthogonal experiments. In contrast with pure cellulose fibers, CNWs supported Fe3+ catalyst applied in converting syngas to biofuels showed shorter stabilization time and higher C4+ product selectivity. With the increase of reaction temperature to 310°C, CO and H2 could reach their peak conversion rates of 83.4% and 72.1%, while the maximum selectivity of CO2 was 41.1%.
4

Bio-inspired polymer nanocomposites for tissue engineering applications

Pooyan, Parisa 08 June 2015 (has links)
Increasing emphasis has been placed on the use of renewable resources, on decreased reliance on petroleum in order to better utilize global energy needs. Biological structures available in nature have been a constant inspiration to the design and fabrication of the new line of functional biomaterials whose unique phenomena can be exploited in novel applications. In tissue engineering for example, a natural biomimetic material with close resemblance to the profile features existed in a native extracellular matrix could provide a temporary functional platform to regulate and control cellular interactions at a molecular level and to subsequently direct a tissue regeneration. However, the lack of rigidity of natural materials typically limits their mass production. One promising approach to address this shortcoming is to introduce a biomimetic composite material reinforced by high purity nanofibers found in nature. As an attractive reinforcing filler phase, cellulose nanowhiskers (CNWs) offer exceptional properties such as high aspect ratio, large interface area, and significant mechanical performance. As such, CNWs could integrate a viable nanofibrous porous candidate, resulting in superior structural diversity and functional versatility. Inspired by the fascinating properties of cellulose and its derivatives, we have designed two bio-inspired nanocomposite materials reinforced with CNWs in this work. The successful grafting of CNWs within the host matrix and their tendency to interconnect with one another through strong hydrogen bonding gave rise to the formation of a three-dimensional rigid percolating network, fact which imparted considerable mechanical strength and thermal stability to the entire structure with only a small amount of filler content, i.e. 3 wt.%. Also, the biocompatibility of the nanocomposite was probed by in-vitro incubation of human-bone-marrow-derived mesenchymal stem cells (MSCs), which resulted in the invasion and proliferation of MSCs around the nanocomposite at day 8 of culture. The green functional biomaterial with its unique features in this work could open new perspectives in the self-assembly of nanobiomaterial for tissue-engineered scaffolding, while it could make the design of the next generation of fully green functional biomaterial a reality.
5

Etude des propriétés rhéologiques et structurales d'hydrogels d'agarose chargés de nanowhiskers de cellulose / Rheological and structural study of agarose hydrogels filled by cellulose nanowhiskers

Le Goff, Kévin Jacques 02 December 2014 (has links)
La cellulose est l’une des bio-ressources les plus abondantes sur terre ; elle forme des microfibrilles où alternent régions cristallines, de taille nanométrique, et régions amorphes. L’utilisation des nanocristallites de cellulose, appelés nanowhiskers, comme renforts dans des composites à matrice polymère thermoplastique a fait l’objet de nombreuses publications. En revanche, l’utilisation de nanowhiskers comme éléments structurants d’hydrogels n’a pas été vraiment explorée, en dépit d’un intérêt potentiel pour la formulation d’hydrogels verts innovants. L’objectif de la thèse était d’étudier les relations entre état structural à différentes échelles et propriétés rhéologiques de systèmes hydrocolloïdaux constitués d’hydrogels d’agarose chargés de nanowhiskers de cellulose issus de tunicier, un animal marin. Les travaux expérimentaux menés au cours de cette thèse ont montré que l’effet renfort apporté par les nanowhiskers à la matrice agarose pouvait être marqué, et qu’il pouvait être modulé en faisant varier la densité de charges électriques à la surface des nanowhiskers. Aux fractions volumiques étudiées, inférieures à 0,2%, les résultats ont montré que les nanowhiskers ne percolaient pas et l’effet renfort a été attribué à des modifications topologiques du réseau d’agarose, et à un transfert des contraintes efficace entre la matrice et les charges, qui interagissent via des liaisons hydrogène. Les résultats obtenus au cours de cette thèse permettent d’améliorer la connaissance des mécanismes qui gouvernent les propriétés renfort apportées par l’ajout de nanocharges cellulosiques à une matrice hydrogel, et donnent des pistes réalistes pour une formulation maîtrisée d’hydrogels verts innovants ayant de bonnes propriétés mécaniques. / Cellulose is the most abundant organic compound on Earth; it is composed of microfibrils, containing nanocrystalline regions, and amorphous regions. Cellulose nanocrystallites, called nanowhiskers, have been studied as reinforcement agents in polymer composites with thermoplastic matrix in numerous publications. However, the use of nanowhiskers to reinforce hydrogels has not really been explored up to now, despite potential interest in the formulation of green innovative hydrogels. The aim of this PhD thesis was to study the relationship between the structural state, on different length scales, and the rheological properties of hydrocolloid systems consisting of agarose hydrogels filled by cellulose nanowhiskers from tunicate, amarine animal. The experimental work performed in this thesis has shown that the reinforcing effect provided by the nanowhiskers could be marked, and could also be modulated by varying the density of electrical charges on the surface of nanowhiskers. Within the volume fraction range studied, that is less than 0.2%, the results have shown that the nanowhiskers could not percolate, and reinforcement effect was attributed to topological modifications of the agarose network, and to an efficient stress transfer between the matrix and the fillers, which interact via hydrogen bonds.The results obtained in this thesis improve the understanding of the mechanisms that govern there inforcement effect provided by the addition of cellulose nanofillers in a hydrogel matrix; they could also help to design innovative green hydrogels having good mechanical properties.
6

Obtenção de nanowhiskers de celulose para aplicação em revestimento polimérico

Borsoi, Cleide January 2016 (has links)
Os revestimentos poliméricos podem atuar como uma barreira física entre os íons agressivos e o substrato metálico. Porém, uma exposição prolongada pode causar danos ao revestimento polimérico, conduzir a uma redução contínua do efeito barreira e por consequência a perda da proteção contra a corrosão. A utilização de nano materiais pode atuar aumentando o efeito barreira, proporcionando um aumento no caminho de difusão dos íons agressivos e água até o substrato metálico. Nanopartículas de celulose apresentam elevada cristalinidade e razão de aspecto, excelentes propriedades mecânicas e são proveniente de fonte renovável. Por outro lado, a polianilina (PAni) vem sendo utilizada em revestimentos devido a elevação do potencial de corrosão dos aços devido o seu comportamento redox que proporciona a formação de uma camada de óxidos estável no substrato metálico. A aderência do revestimento polimérico é fundamental para que este possa atuar como revestimento protetor contra a corrosão. Com isso, um pré-tratamento superficial a base de ácido hexafluorzircônico e a utilização de organosilanos na resina epóxi, podem ser utilizados melhorando as propriedades de proteção contra a corrosão e de aderência. O objetivo deste estudo consistiu na obtenção de nanowhiskers de celulose (CNW) por moagem ultrafina através da celulose microcristalina (MCC) para posterior utilização em revestimento polimérico a base de resina epóxi. A CNW foi utilizada funcionalizada ou não com PAni SE (polianilina na forma condutora – sal de esmeraldina) em comparação a MCC nas mesmas condições. Foi avaliada a incorporação de silano aminopropiltrietoxisilano (APS) na resina epóxi e a utilização de uma camada de conversão de zircônia (Zr) aplicada ao substrato metálico. Os revestimentos poliméricos foram avaliados quanto a propriedades mecânicas e à proteção contra a corrosão. As imagens da microscopia de transmissão (TEM) mostram que é possível a obtenção da CNW por meio do processo de moagem, apresentando melhor estabilidade térmica em comparação a MCC. Os revestimentos poliméricos utilizando o silano APS e a camada de conversão de Zr apresentaram as melhores propriedades físicas e mecânicas. A interação entre a carga de reforço, a resina epóxi e a superfície metálica é um fator determinante na eficiência do revestimento polimérico, pois de acordo com a análise de migração subcutânea, a superfície do aço carbono, após 1000 h de exposição, não apresentou corrosão superficial. Com relação à proteção contra a corrosão, quando incorporado a CNW funcionalizada com PAni SE ao revestimento epóxi com APS e a camada de Zr, este apresentou os melhores resultados como constatado nas análises de névoa salina e espectroscopia de impedância eletroquímica (EIS). / Polymeric coatings can act as a physical barrier between the aggressive ions and the metal substrate. However, prolonged exposure can cause damage to the polymer coating and conduct to a continuous reduction in the barrier effect and result in the loss of protection against corrosion. The use of nanomaterials may act by increasing the barrier effect and providing an increased diffusion path of aggressive ions and water to the metal substrate. Cellulose nanoparticles have high crystallinity and aspect ratio, excellent mechanical properties and are derived from renewable sources. On the other hand polyaniline (PAni) has been used in coatings due to the increase of the corrosion potential of the steel due to redox behavior that results in the formation of a stable oxide layer on the metallic substrate. The adhesion of the polymeric coating is essential so that it can act as a protective coating against corrosion. With this, a superficial pre-treatment based on hexafluorzircônico acid and the use of organosilanes in the epoxy resin, can be used to improve the protection against corrosion properties and adhesion. The objective of this study was to obtain cellulose nanowhiskers (CNW) for ultrafine grinding through microcrystalline cellulose (MCC) for subsequent use in the polymer coating based on epoxy resin. The CNW was used functionalized or not with PAni SE (polyaniline in the conductive form - emeraldine salt) compared with MCC under the same conditions. The incorporation of silane aminopropyltriethoxysilane (APS) was evaluated in the epoxy resin and the use of a zirconia conversion layer (Zr) applied to the metal substrate. The polymeric coatings were evaluated for mechanical properties and corrosion protection. Transmission microscopy (TEM) show that obtaining the CNW through the ultrafine grinding process is possible, resulting in better thermal stability compared with MCC. Polymeric coatings using APS silane and Zr conversion coating had the best physical and mechanical properties. The interaction between the reinforcing filler, the epoxy resin and the metal surface is a determining factor in the efficiency of the polymeric coating, because according to the subcutaneous migration analysis, carbon steel surface after 1000 h of exposure, showed no corrosion superficial. With regard to protection against corrosion, when incorporated CNW functionalized with PAni SE to epoxy coating with APS and the Zr layer, showed the best results as found in salt spray tests and electrochemical impedance spectroscopy (EIS).
7

Obtenção de nanowhiskers de celulose para aplicação em revestimento polimérico

Borsoi, Cleide January 2016 (has links)
Os revestimentos poliméricos podem atuar como uma barreira física entre os íons agressivos e o substrato metálico. Porém, uma exposição prolongada pode causar danos ao revestimento polimérico, conduzir a uma redução contínua do efeito barreira e por consequência a perda da proteção contra a corrosão. A utilização de nano materiais pode atuar aumentando o efeito barreira, proporcionando um aumento no caminho de difusão dos íons agressivos e água até o substrato metálico. Nanopartículas de celulose apresentam elevada cristalinidade e razão de aspecto, excelentes propriedades mecânicas e são proveniente de fonte renovável. Por outro lado, a polianilina (PAni) vem sendo utilizada em revestimentos devido a elevação do potencial de corrosão dos aços devido o seu comportamento redox que proporciona a formação de uma camada de óxidos estável no substrato metálico. A aderência do revestimento polimérico é fundamental para que este possa atuar como revestimento protetor contra a corrosão. Com isso, um pré-tratamento superficial a base de ácido hexafluorzircônico e a utilização de organosilanos na resina epóxi, podem ser utilizados melhorando as propriedades de proteção contra a corrosão e de aderência. O objetivo deste estudo consistiu na obtenção de nanowhiskers de celulose (CNW) por moagem ultrafina através da celulose microcristalina (MCC) para posterior utilização em revestimento polimérico a base de resina epóxi. A CNW foi utilizada funcionalizada ou não com PAni SE (polianilina na forma condutora – sal de esmeraldina) em comparação a MCC nas mesmas condições. Foi avaliada a incorporação de silano aminopropiltrietoxisilano (APS) na resina epóxi e a utilização de uma camada de conversão de zircônia (Zr) aplicada ao substrato metálico. Os revestimentos poliméricos foram avaliados quanto a propriedades mecânicas e à proteção contra a corrosão. As imagens da microscopia de transmissão (TEM) mostram que é possível a obtenção da CNW por meio do processo de moagem, apresentando melhor estabilidade térmica em comparação a MCC. Os revestimentos poliméricos utilizando o silano APS e a camada de conversão de Zr apresentaram as melhores propriedades físicas e mecânicas. A interação entre a carga de reforço, a resina epóxi e a superfície metálica é um fator determinante na eficiência do revestimento polimérico, pois de acordo com a análise de migração subcutânea, a superfície do aço carbono, após 1000 h de exposição, não apresentou corrosão superficial. Com relação à proteção contra a corrosão, quando incorporado a CNW funcionalizada com PAni SE ao revestimento epóxi com APS e a camada de Zr, este apresentou os melhores resultados como constatado nas análises de névoa salina e espectroscopia de impedância eletroquímica (EIS). / Polymeric coatings can act as a physical barrier between the aggressive ions and the metal substrate. However, prolonged exposure can cause damage to the polymer coating and conduct to a continuous reduction in the barrier effect and result in the loss of protection against corrosion. The use of nanomaterials may act by increasing the barrier effect and providing an increased diffusion path of aggressive ions and water to the metal substrate. Cellulose nanoparticles have high crystallinity and aspect ratio, excellent mechanical properties and are derived from renewable sources. On the other hand polyaniline (PAni) has been used in coatings due to the increase of the corrosion potential of the steel due to redox behavior that results in the formation of a stable oxide layer on the metallic substrate. The adhesion of the polymeric coating is essential so that it can act as a protective coating against corrosion. With this, a superficial pre-treatment based on hexafluorzircônico acid and the use of organosilanes in the epoxy resin, can be used to improve the protection against corrosion properties and adhesion. The objective of this study was to obtain cellulose nanowhiskers (CNW) for ultrafine grinding through microcrystalline cellulose (MCC) for subsequent use in the polymer coating based on epoxy resin. The CNW was used functionalized or not with PAni SE (polyaniline in the conductive form - emeraldine salt) compared with MCC under the same conditions. The incorporation of silane aminopropyltriethoxysilane (APS) was evaluated in the epoxy resin and the use of a zirconia conversion layer (Zr) applied to the metal substrate. The polymeric coatings were evaluated for mechanical properties and corrosion protection. Transmission microscopy (TEM) show that obtaining the CNW through the ultrafine grinding process is possible, resulting in better thermal stability compared with MCC. Polymeric coatings using APS silane and Zr conversion coating had the best physical and mechanical properties. The interaction between the reinforcing filler, the epoxy resin and the metal surface is a determining factor in the efficiency of the polymeric coating, because according to the subcutaneous migration analysis, carbon steel surface after 1000 h of exposure, showed no corrosion superficial. With regard to protection against corrosion, when incorporated CNW functionalized with PAni SE to epoxy coating with APS and the Zr layer, showed the best results as found in salt spray tests and electrochemical impedance spectroscopy (EIS).
8

Obtenção de nanowhiskers de celulose para aplicação em revestimento polimérico

Borsoi, Cleide January 2016 (has links)
Os revestimentos poliméricos podem atuar como uma barreira física entre os íons agressivos e o substrato metálico. Porém, uma exposição prolongada pode causar danos ao revestimento polimérico, conduzir a uma redução contínua do efeito barreira e por consequência a perda da proteção contra a corrosão. A utilização de nano materiais pode atuar aumentando o efeito barreira, proporcionando um aumento no caminho de difusão dos íons agressivos e água até o substrato metálico. Nanopartículas de celulose apresentam elevada cristalinidade e razão de aspecto, excelentes propriedades mecânicas e são proveniente de fonte renovável. Por outro lado, a polianilina (PAni) vem sendo utilizada em revestimentos devido a elevação do potencial de corrosão dos aços devido o seu comportamento redox que proporciona a formação de uma camada de óxidos estável no substrato metálico. A aderência do revestimento polimérico é fundamental para que este possa atuar como revestimento protetor contra a corrosão. Com isso, um pré-tratamento superficial a base de ácido hexafluorzircônico e a utilização de organosilanos na resina epóxi, podem ser utilizados melhorando as propriedades de proteção contra a corrosão e de aderência. O objetivo deste estudo consistiu na obtenção de nanowhiskers de celulose (CNW) por moagem ultrafina através da celulose microcristalina (MCC) para posterior utilização em revestimento polimérico a base de resina epóxi. A CNW foi utilizada funcionalizada ou não com PAni SE (polianilina na forma condutora – sal de esmeraldina) em comparação a MCC nas mesmas condições. Foi avaliada a incorporação de silano aminopropiltrietoxisilano (APS) na resina epóxi e a utilização de uma camada de conversão de zircônia (Zr) aplicada ao substrato metálico. Os revestimentos poliméricos foram avaliados quanto a propriedades mecânicas e à proteção contra a corrosão. As imagens da microscopia de transmissão (TEM) mostram que é possível a obtenção da CNW por meio do processo de moagem, apresentando melhor estabilidade térmica em comparação a MCC. Os revestimentos poliméricos utilizando o silano APS e a camada de conversão de Zr apresentaram as melhores propriedades físicas e mecânicas. A interação entre a carga de reforço, a resina epóxi e a superfície metálica é um fator determinante na eficiência do revestimento polimérico, pois de acordo com a análise de migração subcutânea, a superfície do aço carbono, após 1000 h de exposição, não apresentou corrosão superficial. Com relação à proteção contra a corrosão, quando incorporado a CNW funcionalizada com PAni SE ao revestimento epóxi com APS e a camada de Zr, este apresentou os melhores resultados como constatado nas análises de névoa salina e espectroscopia de impedância eletroquímica (EIS). / Polymeric coatings can act as a physical barrier between the aggressive ions and the metal substrate. However, prolonged exposure can cause damage to the polymer coating and conduct to a continuous reduction in the barrier effect and result in the loss of protection against corrosion. The use of nanomaterials may act by increasing the barrier effect and providing an increased diffusion path of aggressive ions and water to the metal substrate. Cellulose nanoparticles have high crystallinity and aspect ratio, excellent mechanical properties and are derived from renewable sources. On the other hand polyaniline (PAni) has been used in coatings due to the increase of the corrosion potential of the steel due to redox behavior that results in the formation of a stable oxide layer on the metallic substrate. The adhesion of the polymeric coating is essential so that it can act as a protective coating against corrosion. With this, a superficial pre-treatment based on hexafluorzircônico acid and the use of organosilanes in the epoxy resin, can be used to improve the protection against corrosion properties and adhesion. The objective of this study was to obtain cellulose nanowhiskers (CNW) for ultrafine grinding through microcrystalline cellulose (MCC) for subsequent use in the polymer coating based on epoxy resin. The CNW was used functionalized or not with PAni SE (polyaniline in the conductive form - emeraldine salt) compared with MCC under the same conditions. The incorporation of silane aminopropyltriethoxysilane (APS) was evaluated in the epoxy resin and the use of a zirconia conversion layer (Zr) applied to the metal substrate. The polymeric coatings were evaluated for mechanical properties and corrosion protection. Transmission microscopy (TEM) show that obtaining the CNW through the ultrafine grinding process is possible, resulting in better thermal stability compared with MCC. Polymeric coatings using APS silane and Zr conversion coating had the best physical and mechanical properties. The interaction between the reinforcing filler, the epoxy resin and the metal surface is a determining factor in the efficiency of the polymeric coating, because according to the subcutaneous migration analysis, carbon steel surface after 1000 h of exposure, showed no corrosion superficial. With regard to protection against corrosion, when incorporated CNW functionalized with PAni SE to epoxy coating with APS and the Zr layer, showed the best results as found in salt spray tests and electrochemical impedance spectroscopy (EIS).
9

Cellulose nanowhiskers for tissue engineering skeletal muscle

Dugan, James Michael January 2012 (has links)
Cellulose nanowhiskers (CNWs) are high aspect ratio rod-like nanoparticles with diameters on the order of a few nanometers. For the very first time CNWs are demonstrated as a useful material for guided tissue engineering. Due to their nanoscale dimensions and high aspect ratio, highly oriented spin coated surfaces of CNWs are shown to direct the morphology and terminal differentiation of myoblasts, allowing the culture of skeletal muscle-like tissue with a more physiologically relevant structure.CNWs are prepared from cellulose extracted from the tunicate Ascidiella sp. using acid hydrolysis to prepare high aspect ratio particles with diameters of approximately 5 to 6 nm. A spin coating method is used to prepare sparsely adsorbed sub-monolayers of CNWs with a high degree of relative orientation. The surfaces have a mean feature height of only 5.5 nm and the degree of CNW adsorption and orientation is modulated by altering the preparation procedure. When C2C12 myoblasts are seeded to the surfaces, the cells adopt highly oriented morphologies induced by the CNWs via contact guidance. This is a demonstration of contact guidance on some of the smallest topographical features ever reported. Furthermore, the highly oriented CNWs promote fusion and terminal differentiation of the myoblasts to form multinucleated myotubes with a striking degree of parallel orientation.CNW surfaces are also shown to support the adhesion and spreading of human mesenchymal stem cells, inducing the adoption of highly oriented cell morphologies. The ability of hMSCs to undergo cell fusion with C2C12 myotubes highlights the great potential for tissue engineering human skeletal muscle, using CNWs to direct the structure of the tissue. The bioactivity and low cytotoxicity of CNWs, coupled with their low cost and simple production procedure, indicates that CNWs will be a useful material for tissue engineering and regenerative medicine.
10

Effect of surface modifications on biodegradation of nanocellulose and microbial response

Singh, Gargi 22 September 2015 (has links)
History teaches us that novel materials, such as chlorofluorocarbon and asbestos, can have dire unintended consequences to human and environmental health. The exponential growth of the field of nanotechnology and the products developed along the way provide the opportunity for a new paradigm of design thinking, in which human and environmental impacts are considered early on in product development. In particular, nanocellulose is touted as a promising green nanomaterial, as it is sourced from an effectively inexhaustible feedstock of wood-based cellulose and is assumed to be harmless to the environment since it is derived from a natural material and assumed to be biodegradable. The various forms of nanocellulose possess an impressive diversity of properties, making it suitable for a wide variety of applications such as drug delivery, reinforcement, food additives, and iridescent make-up. However, as nanomaterials can have different properties relative to their bulk form, it is questionable whether they are truly environmentally friendly, particularly in terms of their biodegradability and potential impacts to receiving environments. Given the projected mass-scale application of nanocellulose and the inevitability of its subsequent release into environment, the purpose of this study was to determine the biodegradability of nanocellulose and the response of environmentally-relevant microbial communities. Specifically, it was hypothesized that cellulose in the nano size range would display distinct biodegradation patterns and rates, relative to larger forms of cellulose. Further, it was hypothesized that modification of nanocellulose, in terms of morphology and surface properties (e.g., charge), would further influence its biodegradability. Wetlands and anaerobic digesters were selected as two environmentally-relevant receiving environments that also play critical roles in global carbon turnover. To examine the biodegradability of nanocellulose, two distinct microbial consortia were enriched from wetland (W) and anaerobic digester (AD) inocula and applied in parallel experiments. The consortia were grown under anaerobic conditions with microcrystalline cellulose as the sole carbon substrate over a period of 246 days before being aliquoted to microcosms for subsequent biodegradation assays. Various forms of nanocellulose were spiked into the microcosms and compared with microcrystalline cellulose as a non nano reference. Microcosms were sacrificed in triplicate with time to monitor cellulose degradation as well as various measures of microbial community response. Microbial communities were characterized in terms of gene markers for total bacteria (16S rRNA genes) and anaerobic cellulose degraders (glycoside hydrolase family 48 genes, i.e., cel48) as well as high throughput amplicon sequencing of 16S rRNA genes (V4 region). A series of three studies examined: 1) the effect of nanocrystalline versus microcrystalline cellulose; 2) the effects of nanocellulose morphology (crystalline rod versus filament) and surface functionalization (cationic and anionic); and 3) metagenomic characterization of cellulose degrading communities using next-generation DNA sequencing. It was found that the nano- size range did not hinder cellulose degradation, in fact, nanocrystalline cellulose degraded slightly faster than microcrystalline cellulose according to 1st order kinetics (1st order decay constants: 0.62±0.08 wk-1 for anionic nanocrystalline cellulose versus 0.39±0.05 wk-1 for microcrystalline cellulose exposed to AD culture; 0.69±0.04 wk-1 for anionic nanocrystalline cellulose versus 0.58±0.05 wk-1 for microcrystalline cellulose exposed to W). Experiments comparing the effects of surface functionalization indicated that anionic nanocellulose degraded faster than cationic cellulose (1st order decay constants for cationic nanocrystalline cellulose: 0.48±0.06 wk-1 and 0.58±0.07 wk-1 on exposure to AD and W cultures respectively). Measurements of 16S rRNA and cel48 genes were consistent with this trend of greater biological growth and cellulose-degrading potential in the anionic nanocellulose condition, suggesting that surface properties can influence biodegradation patterns. Taxonomic characterization of 16S rRNA gene amplicons suggested that taxa known to contain anaerobic cellulose degraders were enriched in both W and AD consortia, which shifted in a distinct manner in response to exposure to the different cellulosic materials. This suggests that distinct groups of microbes may drive the biodegradation of different forms of cellulose. Further, metagenomic investigation provided new insight into taxonomic and functional aspects of anaerobic cellulose degradation, including identification of enzymatic families associated with degradation of the various forms of cellulose. Overall, the findings of this study advance understanding of anaerobic cellulose degradation and indicate that nanocellulose is likely to readily degrade in receiving environments and not pose an environmental concern. / Ph. D.

Page generated in 0.0817 seconds