• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 700
  • 525
  • 168
  • 123
  • 77
  • 36
  • 23
  • 16
  • 15
  • 11
  • 10
  • 7
  • 6
  • 6
  • 6
  • Tagged with
  • 1995
  • 481
  • 341
  • 341
  • 213
  • 195
  • 188
  • 164
  • 158
  • 140
  • 128
  • 123
  • 116
  • 108
  • 106
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

Glass Ionomer Cements with Improved Bioactive and Antibacterial Properties

Chen, Song January 2016 (has links)
Dental restorative cements are placed in a harsh oral environment where they are subjected to thermal shock, chemical degradation, and repeating masticatory force. The ideal restorative dental cements should have superior mechanical properties, chemical stability, aesthetic, good handling properties, biocompatibility, antibacterial properties, and preferably bioactivity. This thesis presents research on dental restorative cements with enhanced properties. The overall aim was to increase the bioactivity and antibacterial properties of dental restorative cements without affecting their other properties. The effect from adding calcium silicate to glass ionomer cement (GIC) was investigated. The results showed that calcium silicate could increase the bioactivity and reduce the cytotoxicity of conventional glass ionomer cement without compromising its setting and mechanical properties. Hydroxyapatite (HA) with a high aspect ratio and thin nacreous-layered monetite sheets were also synthesized. Nano HA particles with an aspect ratio of 50 can be synthesized by both precipitation and hydrothermal methods. The aspect ratio was controlled via the pH of reaction medium. Thin nacreous-layered monetite sheets were synthesized through a self-assembly process in the presence of an amine based cationic quaternary surfactant. Temperature, pH, and presence of surfactant played essential roles in forming the nacreous-layered monetite sheets. Then the effect from adding silver doped HA and monetite particles was investigated. The results showed that the antibacterial properties of GIC could be increased by incorporating silver doped HA and monetite particles. Further examination showed that the pH change, F- ion release, and concentration of released Ag+ ions were not responsible for the improved antibacterial properties. The quasi-static strengths and compressive fatigue limits of four types of the most commonly used dental restorations were evaluated. In our study, resin modified GIC and resin-based composite showed superior static compressive strength and fatigue limits compared to conventional GIC. The static compressive strength of dental cements increased with the aging time. However, aging had no effect on the compressive fatigue limit of resin modified GIC and resin-based composite. The compressive fatigue limit of conventional GIC even showed a drastic decrease after aging.
402

Energy management in the Jordanian cement industry

Al-Halawani Al-Tamimi, Hatem January 2000 (has links)
Energy is essential to economic prosperity and quality of life. However it can have detrimental effects on the environment if not used properly. Moreover, if energy resources are scarce in a given country, then its use will impose economic and financial burdens on the national economy. The cement industry is energy-intensive, which adds a micro dimension to the macro issues mentioned above. Reducing energy consumption without due consideration to production requirements is not an optimal situation. What is needed is to arrive at a situation whereby energy is used rationally. The concept of rational use of energy has two embedded principles. The first is increased energy-use efficiency and the second is environmental protection. Jordan Cement Factories (JCF), located in a developing country where energy resources are not indigenously available and, therefore, costly energy requirements are imported, have realised the importance of addressing the energy management and conservation issues. This thesis describes the efforts initiated and conducted by the author, to address the research problem of improving energy usage through the application of effective management techniques aimed at reducing energy consumption per unit of cement produced. This present research has been concerned with energy management and efficient use of energy. The Jordan Cement Factories were used as a vehicle to demonstrate the proposed research methodology that aimed at improving energy consumption and thus operational efficiency. The methodology is based on establishing statistically significant relationships between interacting problem factors, and assessing the economic impact of improving these factors. Economic evaluation entailed the development of economic models and an application methodology combined with illustrative case studies. Consequently, the problem of energy management has been presented in a wider perspective that addressed the whole management system at the organisation. Towards that end, it was first necessary to show the significance of energy cost with respect to the overall manufacturing costs. The analysis of production costs, which demonstrated the significance of energy costs, was followed by the investigation and examination of the basic management factors that have direct impact on energy consumption at the JCF. Among these factors are, for instance, production line availability, production rate, average number of stoppages, and average duration of stoppages. These factors were determined using preliminary data analysis and the experience and technical knowledge of the researcher. The statistical analysis proved the existence of strong relationships between energy consumption and management factors. Several models were developed for a set of selected production lines, in the JFC at Fuhais and Rashadiya plants. These statistical models were generated using actual data for electrical energy and fuel consumption. The derived models have demonstrated the existence of strong relationships between energy consumption and management control factors; for instance, the values of R2 range from 60% to 90%. This implies that an equivalent percentage of the variations in energy consumption can be attributed to the selected management factors. The economic model developed in this research is concerned with demonstrating that effective management practices associated with proper maintenance and housekeeping can result in highly significant savings in energy usage. Although a simplistic methodology was used to evaluate the economic impact of any improvement programme, the economic treatment showed that the cost of improvement is actually negligible compared to the realisable savings in energy usage. The research has dealt with the details of developing a coherent energy management model whose objective is to establish transformational management processes of certain high-level management factors into daily operations and controls. The high-level management .factors are the same factors used as independent variables in the statistical and economic models, which statistically proved to be the major factors affecting the energy consumption at JCF. The research has also presented a detailed analysis of the organisational and procedural aspects of energy management with concentration on management functions, especially planning, controlling, executing, organising, and auditing. A detailed mapping and analysis of these functions as the main components of an Energy Management System (EMS) resulted in establishing job descriptions, organisational charts, work instructions and procedures for all-important functions of the EMS. The type of work described in this thesis could be extrapolated for application in other industries, particularly energy-intensive ones, to arrive at the objective of rational use of energy at the national and international levels. Comprehensive studies would need to be carried out for each type of industry prior to implementation. The cost benefit analysis presented in this research proved, beyond any doubt, the importance of implementing the EMS in JCF. As a result of this implementation it is demonstrated that huge annual savings were realised. Finally, as a result of improving energy control factors, introducing energy conservation measures and employing management techniques at JCF to guarantee the effectiveness of all such activities, resulted in an annual savings amount to about USS 3.5 million. Therefore, if the same or similar actions are undertaken by all cement, or other highly energy intensive industries then the savings could reach billions of dollars.
403

Approche multi-échelle des propriétés mécaniques et de transport des matériaux cimentaires soumis à des élévations de température / A multi-scale approach of mechanical and transport properties of cementous materials under rises of temperature

Caratini, Grégory 21 May 2012 (has links)
Les activités industrielles modernes (stockage de déchets nucléaires, puits géothermiques, centrales nucléaires, …) peuvent solliciter les matériaux cimentaires dans des conditions extrêmes, par exemple à des températures supérieures à 200 °C. Ce niveau de température va induire des phénomènes de déshydratation au sein de la pâte, impactant notamment les C-S-H, hydrate majoritaire à l'origine de la cohésion mécanique. L'effet de cette déshydratation sur les propriétés mécaniques et de transport a ainsi fait l'objet de ce travail de thèse. Afin d'appréhender ces effets, il convient de prendre en compte le caractère hétérogène, poreux et multi-échelle de ces matériaux. Pour cela, la micromécanique et les outils d'homogénéisation basés sur la solution d'Eshelby ont été utilisés. Par ailleurs, pour accompagner cette modélisation multi-échelle, des essais mécaniques basés sur la théorie des milieux poreux ont été menés. La mesure des modules de compressibilité, de la perméabilité et de la porosité sous confinement ont permis d'étudier les mécanismes de dégradation de ces matériaux lors de sollicitations thermiques jusqu'à 400°C / The modern industrial activities (storage of nuclear waste, geothermal wells, nuclear power plants, ...) can submit cementitious materials to some extreme conditions, for example at temperatures above 200 ° C. This level of temperature will induce phenomena of dehydration in the cement paste, particularly impacting the CSH hydrates which led to the mechanical cohesion. The effects of these temperatures on the mechanical and transport propertes have been the subject of this thesis.To understand these effects, we need to take into account the heterogeneous, porous, multi-scale aspects of these materials. To do this, micromechanics and homogenization tools based on the Eshelby problem's solution were used. Moreover, to support this multi-scale modeling, mechanical testing based on the theory of porous media were conducted. The measurements of modulus compressibility, permeability and porosity under confining pressure were used to investigate the mechanisms of degradation of these materials during thermal loads up to 400 ° C
404

A finite element modelling strategy for suture anchor devices

Hughes, Christopher January 2014 (has links)
Suture or bone anchors are used to reattach a tendon or ligament after it has been torn away from the bone. Anchors provide secure attachments to bone during trauma or reconstructive surgery, holding the ligament or tendon in place and potentially allowing greater mobility during recovery. Computer modelling techniques are used to investigate both established bone anchor technology, such as threaded implants, and emerging technologies such as cement augmentation or sonic-fusion. Sonic fusion is an ultrasound-assisted anchoring method which has recently been introduced in low load maxillofacial applications, and is expected to be used in other low load applications such as hallux valgus alignment procedures and suture attachment. Threaded anchors were examined using two Finite Element (FE) models of human cancellous bone, representing both “normal” and “weaker” bone. Simulation and analysis revealed the critical nature of modelling the microstructure of bone. Changing the direction of loading in the model leads to significant changes in the response of the construct, and this cannot be represented in continuum models, or in physical models using artificial cancellous bone. Rapid prototyping (RP) using 3d printing was used for validation of the FE models. While this method has previously been implemented to create physical bone models, testing an assembly model and comparing it to FE results for inclined loading had not been attempted. RP models were created of the threaded anchor in both “normal” and “weaker” bone, and a sonic fusion model in the normal bone was also created. These models were then subjected to mechanical testing. Results produced from the simulation correlated with the physical results. The importance of a cortical layer was re-confirmed. At the apparent densities simulated, engagement with the cortical layer increases pull-out force dramatically. Engaging the anchor even with a thin cortical layer can produce a significant improvement to pull-out strength. Novel sonic fusion FE models were created from a CT scan of animal bone, and the geometry for both the sonic-fusion pin and bone were taken from the CT scan. Computer generated geometry was used to build pin concepts of varying shapes. It was shown that if good engagement is made with bone, as in the case of all of the concepts created, then sonic fusion can produce a good holding power - comparable with that of a threaded anchor. The results showed that sonic-fusion requires less drill penetration into the bone, meaning less of the inherent bone structure is removed – vital for patients with poor bone quality. Bone cement models were investigated. Bone augmentation models were created, and the addition of cement demonstrated an improvement in anchor holding power. The research showed that there are benefits to using FEA as a tool to evaluate the mechanical aspects of cement distribution. The results proved the hypothesis that augmentation will likely increase the holding power of anchor, and its distribution will affect pull-out significantly. This work has created a method for modelling and evaluating both established and novel bone anchor technology in CT bone geometry, a procedure which could be expanded to other bone implants. It has been validated using the innovative approach of rapid prototyping.
405

Desenvolvimento de um cimento reparador injetável para uso odontológico / Development of an injectable repair cement for dental application

Román, Carla Cecília Alandia 10 June 2015 (has links)
O presente estudo teve por objetivo desenvolver um cimento reparador injetável a base de cimento Portland (CP) e, uma vez determinada a formulação deste cimento experimental (CE), avaliar suas propriedades físico-químicas, mecânicas e ópticas em comparação ao Agregado Trioxido Mineral (MTA). Partiu-se de uma mistura de CP branco e 20% de oxido de bismuto, que foi utilizada como Modelo de MTA para realização de ensaios piloto realizados para determinar a proporção po/liquido (PPL), os agentes radiopacificador, antimicrobiano, plastificante e acelerador de presa. Apos determinação dos constituintes do CE de forma a obter um material com características adequadas ao uso clinico, seu desempenho foi comparado ao MTA frente aos ensaios de injetabilidade, tempo de presa, escoamento, pH, liberação de íons cálcio e arsênio, resistência a compressão (RC), avaliação da estabilidade de cor e MEV. O cimento experimental foi totalmente injetado por meio de seringa comum acoplada a agulha 19 G, diferente do MTA (p<0,05) que atingiu a forca de injeção máxima estabelecida para o teste (100 N) com apenas 10% da massa injetada. O MTA apresentou a menor media de tempo de presa inicial e final, com diferença estatisticamente significante em relação ao CE. Enquanto o escoamento do MTA foi nulo, o CE apresentou bom escoamento segundo a norma n&ordm; 57 da ADA. Não houve diferença estatisticamente significante (p>0,05) entre o pH dos cimentos testados nos períodos de 2 h e 24 h, porem, apos 168 h, o MTA apresentou pH mais elevado, diferente estatisticamente (p<0,05) do CE. No período de 2 h, ambos os cimentos tiveram liberação semelhante de íons Ca+ (p>0,05), entretanto, após 24 h e 168 h, o CE teve liberação de Ca+ significativamente maior (p<0,05) do que o MTA. Não foi detectada liberação de íons arsênio nos cimentos avaliados. O CE apresentou maiores valores de RC que o MTA em todos os tempos estudados, com diferença estatisticamente significante (p<0,05) apos 24 h e 7 d. Ambos os cimentos apresentaram alteração de cor (&Delta;E) em níveis clinicamente inaceitáveis (&Delta;E3,3), no entanto, quando o CE foi testado sem adição de prata, apresentou (&Delta;E) semelhante (p>0,05) ao grupo controle (sem cimento). De acordo com os resultados obtidos, conclui-se que a combinação dos aditivos utilizada no estudo foi capaz de proporcionar ao cimento experimental boas propriedades, o que permitiu a obtenção de um cimento reparador injetável com atividade antimicrobiana melhorada / The aim of this study was to develop an injectable repair cement based on Portland cement (PC) and, once the formulation of this experimental cement (EC) was defined, to assess its physical-chemical, mechanical and optical properties in comparison to the Mineral Trioxide Aggregate (MTA). A mixture of white PC and 20% bismuth oxide, was used as a MTA Model to perform the pilot tests in order to choose the powder-to-liquid ratio (PLR), radiopacifier agent, antimicrobial agent, liquefier and setting accelerator for the EC. Once all the constituents of the EC were chosen and after it demonstrated to be suitable for clinical application, its performance was compared to MTA through injetability tests, setting time, flow, pH, calcium and arsenic ion release, compressive strength (CS), evaluation of color stability and SEM. The EC was fully injected through a 19G needle coupled to a common syringe, different (p <0.05) from MTA, which reached the maximum injection force (100N) with only 10% of its mass injected. The MTA had statistically significant lower initial and final setting times compared to EC. MTA did not flow, while EC showed good flow according to n&ordm; 57 ADA standard. There was no statistically significant difference (p> 0.05) between the pH of the cements after 2 h and 24 h, but after 168 h, MTA had higher pH, different (p <0.05) from EC. Regarding calcion ion release, both cements had similar results (p> 0.05) after 2 h, however, after 24 h and 168 h, Ca+2 release was significantly greater (p <0.05) for EC. Arsenic ions were not detected in any cement. The EC had higher RC values than MTA in all periods evaluated, with a statistically significant difference (p <0.05) after 24h and 7d. Both cements showed color change (&Delta;E) at clinically unacceptable levels (&Delta;E3,3), however, when the EC was tested without the addition of silver had (&Delta;E) similar (p> 0,05) to control group (without cement). According to the results, it can be concluded that the combination of additives selected in the study was able to provide good properties to the EC, allowing the obtainancy of an injectable repair cement with improved antimicrobial activity
406

Ověření možnosti syntetické přípravy ettringitu a thaumasitu / Verification of the synthetic preparation of ettringite and thaumasite

Hrdina, Matěj January 2015 (has links)
The work is focused on the possibilities of using FBC fly ash for composite cements, monitoring their hydration processes, especially the creation of AFt phase. The possibility of preparing synthetic ettringite and thaumasite and their detection.
407

Identification of refractory material failures in cement kilns

Lugisani, Peter January 2016 (has links)
A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science in Engineering Johannesburg, 11 October 2016 / Refractory lining failure of damaged magnesia bricks and used alumina bricks was investigated by XRF, XRD, SEM-EDS analysis and computational thermochemistry (phase diagrams). In addition, the effect of oxygen partial pressure towards the refractory lining and alkali sulphate ratio were also determined. The presence of low melting phases of KCl, (Na, K) Cl, K2SO4 and CaSO4 compromised the refractoriness of the magnesia bricks because they are liquid at temperatures below clinkerisation temperature (1450 °C). Sodium oxide and potassium oxide in the kiln feed and chlorine and sulphur in the kiln gas atmosphere migrated into the magnesia brick and react to form KCl, (Na, K) Cl and K2SO4. Components of the magnesia brick, CaO reacted with the excess sulphur in the kiln gas atmosphere forming CaSO4. The presence of these impurity phases indicated that the magnesia bricks suffered chemical attack. Potassium and part of components of high-alumina brick reacted to form K2 (MgSi5O12) impurity phase. Phase diagram predictions indicated that the presence of sodium at any given concentration automatically results in liquid formation in the high alumina brick. This confirms that the chemical attack is also the cause of the failure of the high alumina brick. The analysis of the microstructures of both unused and damaged magnesia bricks revealed that the fracture was predominantly intergranular whereas, in high alumina brick, the fracture was transgranular. The absence of evidence of micro-cracks in both magnesia and alumina bricks rules out thermal shock as a failure mechanism. The absence of clinker species and phases in the examined magnesia and alumina bricks indicated that corrosion by clinker diffusion was absent. The partial pressure of oxygen is low (1.333×10−4 atm), it indicates the stability of Fe3O4 and Mn3O4 and therefore does not favour the oxidation of Fe3O4 to formation of Fe2O3 and Mn3O4 to formation of Mn2O3. The values of alkali sulphate ratio indicated that the kiln operating conditions were favourable for chemical attack to occur. / MT2017
408

Cimentos de escória ativada com silicatos de sódio. / Sodium silicate activated blast furnance slag cements.

John, Vanderley Moacyr 18 May 1995 (has links)
Os cimentos de escória apresentam boas possibilidades de mercado, especialmente em aplicações em que o cimento Portland não possa ser utilizado ou onde o seu uso provoque uma elevação dos custos. A confecção de matrizes para fibras sensíveis aos álcalis e a produção de cimentos com baixo calor de hidratação são exemplos. Neste trabalho, a escória foi ativada com silicato de sódio e cal hidratada. O ativador foi formulado de maneira a proporcionar teores de Na2O de 2,5% e 5%, SiO2 de 0% a 14,8% e Ca(OH)2 de 0%, 2,5% e 5%. O aumento dos teores de Na2O e de SiO2, dentro de determinados limites, propicia um notável crescimento da resistência à compressão. Este crescimento da resistência está associado a uma diminuição da porosidade, para um mesmo fator/água aglomerante. Certamente a diminuição da porosidade é devida a um menor grau de organização cristalina dos produtos hidratados, decorrente do aumento da velocidade de precipitação de hidratados e de gel de N-C-S-H. A adição de Ca(OH)2 diminui a velocidade de perda da trabalhabilidade. Os cimentos de escória ativada com silicatos de sódio podem apresentar resistência à compressão de até 100 MPa, superior à dos cimentos Portland, com calor de hidratação da mesma ordem de grandeza. A velocidade de carbonatação destes cimentos é equivalente a dos cimentos Portland de mesma resistência. No entanto, estes cimentos apresentam maior retração hidráulica. / Binders based on ground granulated blast furnace slag (BFS) are suitable for the building industry, mainly if the use of Portland cement is expensive or may cause problems, such as: alkali sensitive fibre-reinforced cement and concretes and low heat-hydration concretes. BFS is activated by sodium silicates and hydrated lime. The compound\'s proportions are: Na2O - 2.5 and 5.0%; SiO2 from 0 to 14.8%; CaOH2 - 0, 2.5 and 5%. The increase of Na2O and SiO2 amounts allows a considerable improvement of binder strength, with values up to 100 MPa. This increase of the strength is related to the decrease of the porosity for a constant water-binder ratio. The porosity is affected certainly by the reduction of the degree of cristalynity of the hydrated compounds, due to the increase of the speed of precipitation of the hydrates or the N-C-S-H gel. It is possible to obtain BFS binders stronger than the Portland cement, with similar hydration heat. The carbonation rate of these new binders is equivalent to those of Portland cement specimens with similar strength. However these BFS binders have higher drying shrinkage.
409

Influência do ligante pré-hidratado nas propriedades de suspensões de cimento Portland. / Influence of pre-hydrated binder in Portland cement suspension properties.

Maciel, Marcel Hark 08 August 2017 (has links)
Dada a considerável parcela de responsabilidade da indústria de produção de cimento no total de emissão mundial de CO2, um dos desafios atuais mais importantes é a adoção de estratégias que reduzam a utilização do cimento, sem prejuízo ao desempenho mecânico e a durabilidade dos materiais cimentícios. Dentre essas estratégias, uma das usualmente empregadas em alguns segmentos industriais é a reutilização de ligante pré-hidratado na produção. O entendimento de como a pré-hidratação altera as propriedades de pastas cimentícias tem também importante implicação científicas, quanto à cinética de reação do cimento Portland, mas sobretudo devido aos impactos nas propriedades reológicas da pasta, tanto após a mistura quanto ao decorrer da hidratação. Sabe-se que a pré-hidratação altera a cinética de hidratação do cimento, impactando as suas propriedades no estado endurecido. Além disso, a pré-hidratação modifica as propriedades físicas do cimento, influenciando diretamente no modo como as partículas se aglomeram. No entanto, boa parte da literatura refere-se à pré-hidratação que ocorre após má estocagem, diferentemente deste trabalho que trata da pré-hidratação em suspensão, mais comum em processos industriais. Assim, neste trabalho foi avaliada a cinética de reação por calorimetria isotérmica enquanto as propriedades reológicas foram avaliadas por reometria rotacional e oscilatória. Para a identificação e quantificação dos hidratos formados, a hidratação foi paralisada e foram realizados testes de TG e DRX. Os resultados mostraram que a adição do pré-hidratado altera a cinética de dissolução/precipitação do cimento anidro. Assim, quanto maior o teor de pré-hidratado e o período de pré-hidratação, menor o tempo de indução, antecipando a formação dos hidratos (silicatos e aluminatos), embora a taxa de reação no período de aceleração não tenha sido afetada de forma significativa. Quanto às propriedades físicas das partículas, forma realizados teste de granulometria, ASE (Área Superficial Específica) e densidade real. A pré-hidratação aumenta a sua ASE, o que acarreta no incremento da tensão de escoamento e da viscosidade das pastas. Inclusive, se esse aumento de ASE for incorporado em determinados modelos (YODEL e Interferência) é possível a predição dessas propriedades reológicas. O aumento de ASE também é responsável pelo maior enrijecimento e menor tempo de pega das suspensões pré-hidratadas. Correlacionando a reação química com a consolidação da pasta, ficou demonstrado que o maior enrijecimento da pasta pré-hidratada tem relação com a maior aproximação entre as partículas, a ASE inicial das pastas e a reatividade do pré-hidratado, otimizando assim a formação da microestrutura pela hidratação. / Given the considerable share of cement industry on overall share of CO2 emissions, one of the most important current challenges is the adoption of strategies that reduce the use of cement without compromising the mechanical performance and durability of cementitious materials. Among these strategies, one of the commonly employed in some industrial segments is the reuse of pre-hydrated binder in production. The understanding of as pre-hydration changes the properties of cementitious pastes also has important scientific implication regarding the reaction kinetics of Portland cement, but mainly due to the impacts on the rheological properties of the paste, both after mixing and along hydration. It is known that pre-hydration alters the hydration kinetics of the cement, impacting its properties in the hardened state. In addition, pre-hydration modifies the physical properties of the cement, directly influencing the way as the particles agglomerates. However, much of the literature refers to the pre-hydration that occurs after bad storage, unlike this work that works with pre-hydration in suspension, more common in industrial applications. Thus, in this work the kinetics of reaction by isothermal calorimetry was evaluated while the rheological properties were evaluated by rotational and oscillatory rheometry. For the identification and quantification of the hydrates formed, the hydration was paralyzed and TG and XRD tests were performed. The results showed that the inclusion of the pre-hydrate alters the dissolution/precipitation kinetics of the anhydrous cement. Thus, the higher the pre-hydration content and the pre-hydration period, the shorter the induction time, anticipating the formation of the hydrates (silicates and aluminates), although the reaction rate in the acceleration period was not significantly affected. As for the physical properties of the particles, there were realized tests of particle size distribution, SSA (Specific Surface Area) and real density. The pre-hydration increases its SSA, which leads to an increase in the yield stress and viscosity of the pastes. Even if this increase of SSA is incorporated in certain models (YODEL and Interference) it is possible to predict these rheological properties. The increase in ASE is also responsible for the greater hardening and quickly setting time of the pre-hydrated suspensions. Correlating the chemical reaction with paste consolidation, it was demonstrated that the higher hardening of the pre-hydrated paste is related to the greater approximation between the particles, the initial ASE of the pastes and the reactivity of the pre-hydrate, optimizing then the formation of the microstructure by hydration.
410

Estudo sobre a utilização das escórias de aciaria LD naturais ou modificadas para substituição parcial do cimento ou como adição ao clínquer. / Study on the use of natural or modified BOF steel slag for partial substitution of the cement or as adition to the clinker.

Pacheco, Ronaldo Feu Rosa 02 August 2017 (has links)
Este trabalho visa estudar o emprego da escória de aciaria a oxigênio (EACN) na construção civil. Para isso, elaborou-se um programa experimental em seis etapas: a primeira compreendeu a caracterização da EACN, do cimento, do clínquer e do gesso; na segunda, a EACN foi cominuída até valores de tamanho de partículas inferiores a 0,075mm; em seguida, caracterizada física, ambiental, química, mineralógica, microestrutural e termicamente, e teve a sua atividade pozolânica determinada; a terceira compreendeu a ativação da escória com hidróxido de sódio; na quarta, foram realizados ensaios de pega expansibilidade, resistência axial à compressão e durabilidade de argamassas de cimento CP V-ARI com substituição parcial do cimento por EACN; na quinta, obteve-se uma primeira escória de aciaria modificada (EACM1) mediante o processo pirometalúrgico da EACN em forma de pó, para alterar a composição química e estrutura para amorfa, tornando-a mais reativa, sendo submetida aos mesmos ensaios da quarta etapa, à exceção dos ensaios de pega e expansibilidade; na sexta e última, obteve-se uma segunda escória modificada (EACM2) pirometalurgicamente: a composição química próxima da escória de altoforno e amorfa. A carga desse processo pirometalúrgico foi calculada pelo software Factsage. Parte dessa escória modificada foi cominuída adicionalmente, de modo que foram obtidas amostras sem moagem adicional (EACM2a) e com moagem adicional (EACM2b). A escória modificada foi submetida aos ensaios da quinta etapa, mais o grau de vitrificação e a reatividade por microscopia de luz transmitida. Os resultados obtidos mostraram que argamassas em que parte do cimento CP V-ARI é substituída por escórias de aciaria (naturais ou modificadas) atendem às especificações de resistência à compressão nos seguintes casos: escória natural e modificada 1: substituição de até 10% do cimento CP V-ARI; escória modificada 2a, substituição de até 20% de cimento; escória modificada 2b, substituição de até 40% do cimento. Observou-se que a escória modificada 2b apresentou resistência à compressão superior ao traço referência nas idades de 28 dias e 91 dias. Apresenta-se ainda a utilização da EACM2b com o clínquer. Outros ensaios e comparações são apresentados para discutir o comportamento observado das escórias em estudo. / This study aims at employing BOF steel slag (EACN) in civil construction. Thus, the study developed an experimental program in six stages: the first one comprised the characterization of BOF steel slag, cement, clinker and gypsum; in the second stage BOF steel slag was reduced to particles sized less than 0.075mm; then, it was physical, environmental, chemical, mineralogical, microstructural and thermally characterized, it also had its pozzolanic activity determined; the third stage comprised the activation of BOF steel slag with sodium hydroxide; during the fourth stage, we carried out setting time, expansibility, axial compressive strength and durability tests for mortars made with cement CP V-ARI and partial substitution with BOF steel slag; in the fifth stage, we obtained the first modified BOF steel slag (EACM1) through pyrometallurgical process of powdered BOF steel slag so as to alter its chemical and structural makeup, making it more reactive to be submitted to the same tests of the fourth stage, except the setting time and expansibility tests; in the sixth and final stage, we obtained the second pyrometallurgically modified BOF steel slag: chemical makeup close to blastfurnace slag. The load of this pyrometallurgical process was calculated using software Factsage. Part of this modified slag was ground additionally, so that samples without additional grinding (EACM2a) and with additional grinding (EACM2b) were obtained. The modified slag underwent the fifth-stage tests, and the degree of vitrification and transmitted light microscopy reactivity. The results obtained show that mortars in which part of CP V-ARI cement was replaced with BOF steel slag (natural or modified) meet the compressive strength specifications in the following cases: Natural and modified slag 1: substitution of up to 10% of CP V-ARI cement; Modified slag 2a, substitution of up to 20% cement; Modified slag 2b, substitution of up to 40% cement. We observed that modified slag 2b showed higher compressive strength than the reference mix at ages 28 and 91 days. We also present the use of EACM2b as clinker. Other tests and comparisons are presented so as to discuss the observed behaviors of the study slags.

Page generated in 0.134 seconds