Spelling suggestions: "subject:"Cement concrete"" "subject:"Cement aconcrete""
11 |
Thermal effect curling of concrete pavements on U.S. 23 test road (DEL 23-17.28)Goldsberry, Benjamin M. January 1998 (has links)
No description available.
|
12 |
Pavement response to environmental factorsVon Handorf, Jeffrey J. January 1997 (has links)
No description available.
|
13 |
Capacitor-Probe Calibration and Optimization for NDE Application to Portland Cement ConcreteAlzaabi, Aref Alderbas 31 August 2000 (has links)
Three main objectives have been set for this research. The first is to develop an accurate method for measuring the dielectric constant of PCC using a capacitor probe (C-Probe) that has been recently developed at Virginia Tech and validate it for field application to detect internal PCC flaws such as delamination. The C-Probe consists of two flexible conducting plates, connected to a Network Analyzer, with a specific separation between them. The second is to optimize the C-Probe design configuration for different PCC slab thicknesses. The third objective is to develop a predictive model that correlates the bulk dielectric constant of PCC with its critical parameters (cement, aggregate, and air content). Five calibration methods have been developed and evaluated for the C-Probe to measure the dielectric properties of PCC. This evaluation has demonstrated that open, short, Teflon material (OSM) calibration method is the most appropriate one for the C-Probe. The selected calibration method was used to validate the C-Probe fixture for field application by measuring 1.5 x 1.5 m PCC slabs prepared with different mix properties, thicknesses, and induced deterioration. The C-Probe has been proved to detect induced voids in the PCC slabs. In addition, the effect of steel reinforcement on measurements can be mastered by controlling the penetration of electromagnetic (EM) field in the PCC slabs. The effective penetration depth of the EM field for different C-Probe design configuration was optimized by computer simulation. The results have been used to develop a predictive model that correlates the effective penetration depth with the plates' size, separation between them, and the dielectric constant of the PCC under test. Thus, an optimum design for different desired penetration depth was achieved. Two experimental designs were developed to identify the critical parameters that affect the bulk dielectric constant of PCC. A computer simulation was used to identify the significance of each parameter. A predictive model has been developed to correlate the PCC bulk dielectric constant to the critical parameters. The estimated dielectric constant of PCC using the predictive model was correlated to that obtained by other theoretical mixture models; the predictive model has found to correlate well with Looyenga theoretical mixture model. / Ph. D.
|
14 |
Defect characterization in heterogeneous civil materials using ultrasoundIn, Chi-Won 17 January 2013 (has links)
Asphalt and Portland cement concrete constitutes a significant portion of the total infrastructure all over the world. It has been reported that much of this concrete infrastructure is now approaching or has already passed its original design life. Thus it is critical to be able to quantitatively assess the condition of these concrete components. In order to rehabilitate or repair the civil infrastructure, nondestructive evaluation (NDE) techniques have been of great interest for infrastructure management agencies. However concrete components present several specific NDE challenges that must be addressed. . Concrete naturally exhibits large scale heterogeneous microstructure with a great deal of local material property variability, For this reasons, many conventional NDE techniques that work well for steel and other homogeneous materials cannot be applied to concrete; concrete is unable to transmit high frequencies, as the heterogeneity of the concrete causes signals of smaller wavelengths or wavelengths equal to the nominal aggregate size to be scattered and severely attenuated. Nevertheless, progress has been made towards accurate and reliable in-place NDE of concrete structures and materials, for example impact echo, ultrasonic pulse velocity method, and the ultrasonic wave transmission method. However, the detection of smaller sized defects or remote defects that are located away from the testing location still pose problems. In addition, the large size and potential limited access conditions of civil structures raise additional challenges. To overcome the limitations of current NDE techniques for concrete, this research considers two different types of ultrasonic waves (coherent and incoherent wave) to quantitatively characterize and monitor defects in heterogeneous concrete materials. The global objective of this research is to determine the feasibility and applicability of using these ultrasonic waves as a global, rapid, reliable, and non-biased technique for the routine screening of defects or monitoring of concrete structures and materials. Three different problems are considered: 1) characterization of segregation in asphaltic concrete, 2) crack depth determination in pier cap of concrete bridge structure, and 3) monitoring of self-healing process in cement-based concrete.
|
15 |
Development of Approach to Estimate Volume Fraction of Multiphase Material Using DielectricsLee, Sang Ick 2010 May 1900 (has links)
Most engineering as well as pavement materials are composites composed of two or
more components to obtain a variety of solid properties to support internal and external
loading. The composite materials rely on physical or chemical properties and volume
fraction of each component. While the properties can be identified easily, the volume
fraction is hard to be estimated due to the volumetric variation during the performance in
the field. Various test procedures have been developed to measure the volume fractions;
however, they depend on subjective determination and judgment. As an alternative,
electromagnetic technique using dielectric constant was developed to estimate the
volume fraction. Empirical and mechanistic approaches were used to relate the
dielectric constant and volume fraction. While the empirical models are not very
accurate in all cases, the mechanistic models require assumptions of constituent
dielectric constants. For those reasons, the existing approaches might produce less
accurate estimate of volume fraction. In this study, a mechanistic-based approach using
the self consistent scheme was developed to be applied to multiphase materials. The
new approach was based on calibrated dielectric constant of components to improve
results without any assumptions. Also, the system identification was used iteratively to
solve for dielectric parameters and volume fraction at each step. As the validation
performed to verify the viability of the new approach using soil mixture and portland
cement concrete, it was found that the approach has produced a significant improvement
in the accuracy of the estimated volume fraction.
|
16 |
Properties And Hydration Of Cementitious Systems Containing Low, Moderate And High Amounts Of Natural ZeolitesUzal, Burak 01 September 2007 (has links) (PDF)
The extent of the benefits provided by use of SCMs in cementitious systems increases as their percentage amounts in total binder increases. However, the proportion of SCMs in cementitious systems is limited, especially for natural pozzolans, by some factors such as increase in water requirement and decrease in rate of strength development. Therefore investigations are needed to increase the amount of natural pozzolans in blended cements or in concrete as much as possible without decreasing their performance. This aim requires studies on cementitious systems with more reactive natural pozzolans than widely-used ones.
The objective of the study was to investigate the pozzolanic activity of natural zeolites (clinoptilolite) from two localities in Turkey, and properties of cementitious systems containing low (15%), moderate (35%) and high (55%) amount of them. The study covers characterization of the natural zeolites used, evaluation of their pozzolanic activity in comparison with some popular mineral admixtures, and properties of pastes, mortars, and concrete mixtures containing low, moderate, and high amounts of natural zeolites.
Reactivity of the natural zeolites with Ca(OH)2 was found to be higher than those of the fly ash and the non-zeolitic pozzolan, but lower than that of the silica fume.
Natural zeolite blended cements were characterized with the following highlighted properties / faster setting than portland cement, low amounts of Ca(OH)2 and capillary pores larger than 50 nm in hardened pastes, relatively dense microstructure of hardened paste than portland cement, more compatibility with melamine-based superplasticizer than being with naphthalene-based one, and excellent compressive strength performance.
Concrete mixtures containing natural zeolites as partial replacement for portland cement were characterized with the following properties / 7-day compressive strength of ~25 MPa and 28-day strength of 45-50 MPa with only 180 kg/m3 portland cement and 220 kg/m3 zeolite dosages (55% replacement), comparable modulus of elasticity with plain portland cement concrete, &ldquo / low&rdquo / and &ldquo / very low&rdquo / chloride-ion penetrability for low and large levels of replacement, respectively.
|
17 |
Effect Of Recycled Cement Concrete Content On Rutting Behavior Of Asphalt ConcreteGul, Waqar Ahmed Waqar 01 August 2008 (has links) (PDF)
Disposed waste materials remained from demolished buildings have been an
environmental problem especially for developing countries. Recycled Cement
Concrete (RCC) is one of the abundant components of waste materials that
include quality aggregates. Use of RCC in asphalt concrete pavements is
economically a feasible option as it not only helps in recycling waste materials but
also preserves natural resources by fulfilling the demand for quality aggregate in
pavement constructions. However, due to variability in RCC characteristics, a
detailed evaluation of its effect on asphalt concrete performance is required.
In this study, effect of RCC content on rutting potential of asphalt concrete is
investigated using laboratory prepared specimens. Rutting susceptibility of the
specimens is determined using repeated creep tests performed in the uniaxial
stress mode. Because of the aspect ratio requirements for the repeated creep test,
the standard Marshall mix design procedures were modified based on the energy
concept by changing the compactor device and the applied design number of
blows. The modified specimens were tested to determine a number of parameters
that can describe the rutting behavior of the tested mixes. The findings indicate
that slope constant and flow number give relatively stronger relationships with
rutting behavior as compared to the other rutting parameters. While increasing the RCC content yields improved rutting performance for coarse graded specimens, it
dramatically reduces the performance for fine graded specimens.
|
18 |
Testing and Evaluation of Confined Polymer Concrete Pile with Carbon Fiber SleeveToufigh, Vahid January 2013 (has links)
The goal of this research is to investigate the behavior of polymer concrete confined with a carbon fiber sleeve used as a pile foundation. To evaluate the behavior of a confined polymer concrete pile in this research, four steps was considered. The first step of this investigation considered the mix design of polymer concrete, polymer concrete is a new material which is a combination of epoxy resin and aggregate. Instead of using a traditional mix of cement and water to make concrete, epoxy resin is used. Three dissimilar varieties of aggregate are mixed with different ratios in order to reach the maximum bulk density to obtain the maximum strength. After discovering the optimum ratio which gives the maximum bulk density, several samples of the aggregate are mixed with different ratios of epoxy resin. Next, the samples are investigated in a compression test to observe which ratios have the maximum strength and this ratio is used for a polymer concrete mix design to create a pile foundation. The pile is a built using a cast in place method and confined with a sleeve of carbon fiber. The second part of this investigation determined the structural mechanical properties of confined polymer concrete pile material. The unconfined and confined polymer concrete was tested in compression to determine compressive strength and stress-strain behavior. Similar tests were conducted on unconfined and confined cement concrete for comparison between these materials. Additional tension tests were conducted on unconfined polymer concrete. Then, a carbon fiber sleeve was tested in compression test to determine tensile strength and tension stress-strain behavior. After these tests, the confined polymer concrete is modeled in the computer program MATTCAD which is used to calculate the theoretical bending moment capacity and load-displacement curve. Finally, the confined polymer concrete is tested with the MTS 311 Load Frame in three point load flexure test to determine the experimentally bending moment capacity, load-displacement curve and compare with theoretical results. Confined polymer concrete was tested in one and two way cyclic loading to observe the ductility behavior of this material as laterally loaded piles and compared with cement concrete results in cyclic loading. The third part of this investigation determined the geotechnical mechanical properties of confined polymer concrete pile material. Cyclic Multi Degree of Freedom (CYMDOF) device was used to determine interface reaction and friction angle between confined polymer concrete and soil with interface shear test theory method. Furthermore, the same device was used to determine the friction angle of soil with direct shear test theory, and compare the friction angle results together. The last part of this investigation considered the behavior of different sized confined polymer concrete pile in different types of soil. A confined polymer concrete pile was modeled into PLAXIS and OPENSEES PL computer software to analysis pile in axial load and lateral load respectively. Furthermore, a cement concrete pile was modeled with similar software and conditions to compare these two materials.
|
19 |
Einfluss der Reaktionen verschiedener Zementhauptbestandteile auf den Alkalihaushalt der Porenlösung des Zementsteins /Schäfer, Elke. January 2006 (has links)
Techn. Universiẗat, Diss., 2004--Clausthal.
|
20 |
CHARACTERIZATION OF RECYCLED CONCRETE AGGREGATES (RCA) FROM AN OLD FOUNDATION STRUCTURE FOR ROAD PAVEMENT WORKSAkentuna, Moses 01 August 2013 (has links)
The use of recycled concrete aggregates in Portland cement concrete and granular road base or sub-base works has increased steadily all over the world in order to conserve the limited natural aggregate deposits. The recycling of the demolished concrete aggregate for the use in concrete or granular pavement works will not only help to protect the environment but also an economical benefit to the user. The main drawback for the bulk utilization of demolished or recycled aggregate is its characterization and proper quality control during its production. The overall objective of this research was to characterize recycled concrete aggregates (RCA) obtained from a demolished foundation structure and to determine its suitability for Portland Cement Concrete (PCC) works and use as a granular road base or sub-base material. Tests were carried out on RCA samples to determine whether it meets the specification for concrete aggregate material or a granular road base and sub-base materials. Several concrete mixes consisting of 10, 20, 30, 40, 60, and 80 % replacement of natural coarse aggregates (NCA) with RCA were prepared and tested for compressive strength after curing periods of 7, 14, and 28 days. The compressive strength of concrete made with various percentages of RCA decreased with increasing RCA content but it increased with curing period for all concrete mixes. The durability parameters of the natural aggregates and RCA samples were investigated by using sulfate soundness, rapid freeze-thaw and micro-deval tests to ascertain their chemical and abrasive resistance. The California Bearing Ratio (CBR) of RCA base was also compared with that of a natural road base material to determine its suitability for road base or sub-base works. In this study, the flakiness and elongation indices of the RCA were found to be better than that of conventional natural aggregates. The RCA base material had lower maximum dry density, higher optimum moisture content, and low California Bearing Ratio (CBR) value compared to the natural crushed rock base (NCRB) material but was found to be a relatively good road base material.
|
Page generated in 0.0439 seconds