Spelling suggestions: "subject:"Cement concrete"" "subject:"Cement aconcrete""
21 |
Effect of Admixtures, Chlorides, and Moisture on Dielectric Properties of Portland Cement Concrete in the Low Microwave Frequency RangePokkuluri, Kiran S. 28 October 1998 (has links)
The use of electromagnetic waves as a nondestructive evaluation technique to evaluate Portland cement concrete (PCC) structures is based on the principle that a change in the structure, composition, or properties of PCC results in a change in its dielectric properties. The coaxial transmission line is one of the few devices that can measure the dielectric properties of PCC at a frequency range of 100-1000 MHz. A coaxial transmission line developed at Virginia Tech was used to study the effect of moisture, type of aggregate, water/cement ratio, curing period, admixture type (microsilica, superplasticizer, and shrinkage admixture), and chloride content on the dielectric properties of PCC.
Measurements were conducted in the time domain and converted to the frequency domain using Fast Fourier Transform. The research found that an increase in the moisture content of PCC resulted in an increase in the dielectric constant. Mixes containing limestone aggregate had a greater dielectric constant than those containing granite. The dielectric constant decreased with curing period due to the reduction in free water availability. Mixes containing higher water/cement ratios exhibited a higher dielectric constant, especially in the initial curing period. The admixtures did not significantly affect the dielectric constant after one day of curing. After 28 days of curing, however, all three admixtures had an effect on the measured dielectric constant as compared to control mixes. Chloride content had a significant effect on the loss part of the dielectric constant especially during early curing. A relationship was also established between the chloride permeability (based on conductance measurements) of PCC and its dielectric constant after 75 days of moist curing. / Master of Science
|
22 |
Effects of slab Shape and load transfer Mechanisms on Portland cement concrete pavementMorrison, Jill A. January 2005 (has links)
No description available.
|
23 |
Design and Calibration of a RF Capacitance Probe for Non-Destructive Evaluation of Civil StructuresYoho, Jason Jon III 28 April 1998 (has links)
Portland cement concrete (PCC) structures deteriorate with age and need to be maintained or replaced. Early detection of deterioration in PCC (e.g., alkali-silica reaction, freeze/thaw damage, or chloride presence) can lead to significant reductions in maintenance costs. However, it is often too late to perform low-cost preventative maintenance by the time deterioration becomes evident.
Non-destructive evaluation (NDE) methods are potentially among the most useful techniques developed for assessing constructed facilities. They are noninvasive and can be performed rapidly. Portland cement concrete can be nondestructively evaluated by electrically characterizing its complex dielectric constant. The real part of the dielectric constant depicts the velocity of electromagnetic waves in PCC. The imaginary part describes the conductivity of PCC and the attenuation of electromagnetic waves, and hence the losses within the PCC media.
Dielectric properties of PCC have been investigated in a laboratory setting using a parallel plate capacitor operating in the frequency range of 0.1MHz to about 40MHz. This capacitor set-up consists of two horizontal-parallel plates with an adjustable separation for insertion of a dielectric specimen (PCC). While useful in research, this approach is not practical for field implementation
In this research, a capacitance probe has been developed for field application. The probe consists of two planar conducting plates and is made of flexible materials for placement on exposed surfaces of the specimens to be tested.
The calibration method of both capacitive systems has been extensively studied to minimize systematic errors in the measurement process. These two measurement systems will be discussed and compared to one another on the basis of sensitivity and measurement repeatability. / Master of Science
|
24 |
Concrete Made with Fine Recycled Concrete Aggregate (FRCA): A Feasibility StudyDe Freitas Macedo, Hian 13 September 2019 (has links)
In the process of crushing concrete waste, significant amounts of fine by-products, the so called fine recycled concrete aggregates (FRCA), are generated and excluded from potential use. Limited research has thoroughly investigated the performance of concrete mixes with FRCA, very likely due to the complexity in analysing non-negligible amounts of adhered residual cement paste (RCP). Although some studies have proposed promising sustainable mix-design procedures accounting for the different microstructure when using coarse recycled concrete aggregates (CRCA), no similar approach exists for FRCA concrete. In this work, two promising procedures for mix-designing eco-efficient concrete with 100% FRCA are proposed accounting for the presence of RCP to reduce cement content in new mixtures. First, built on top of the existing procedure for CRCA mix-design, modifications to the Equivalent Volume (EV) method were introduced toconsider full replacement of fine natural sand by FRCA. Second, based on the concept of continuous Particle Packing Models (PPM), an optimized procedure was proposed to allow maximum packing density of FRCA mix linked to a given level of measured RCP content. Results verified the feasibility of producing eco-efficient concrete mixes with 100% FRCA, emphasizing the PPM mixes to report superior rheological and mechanical performance along with suitable durability-related properties. Yet, results also indicated the influence of simple or multistage crushed FRCA on the overall performance of mixes.
|
25 |
Portlandský cement pro silniční stavby / Portland Cement for Road ConstructionVlachovský, David January 2019 (has links)
The field of this diploma thesis is characteristic of cement used in road infrastructure building. In cooperation with the cement plant Horné Srnie, was made previously produced road cement matrix, according to the original recipe. This Diploma thesis is focused on the following characteristics of the cement: the compressive strength, the stiffening process, the volume stability and the development of the hydration heat. The research of the hydration process was analyzed by X-ray diffraction and differential thermal analysis
|
26 |
Latexy modifikované cementové materiály / Latexes modified cementitious materialsVinter, Václav January 2008 (has links)
In this thesis, the development of mechanical properties and structure of latex modified cementious materials during hydration was studied. Latex modified materials are composites of inorganic cement (portland cement) and organic polymer latex. Preparation, processing and fabrication of the polymer cement material based on portland cement was optimized with aim to reach the most compact structure of the product with the finest mechanical characters. The experimental part was pointed to observe influence of the type and amount of polymer latex with focus on mechanical characters and hydration kinetics with given filling as well as without it. In presented work, the possibility of compaction of the material by high-shear mixing within twin-roll mixer (the prototype for production of MDF composite) was verified. The second part of the labor was aimed to analysis of prepared polymer-cementitious material. For determination of influence of batching of added polymer latex on hydration of cement paste the thermal analysis (DTA/TGA) and infrared spectroscopy of composite was done. At last the microscopic observation by optical microscope was carried.
|
27 |
Influência da cura térmica (vapor) sob pressão atmosférica no desenvolvimento da microestrutura dos concretos de cimento Portland / The influence of steam curing in development of microstructure of Portland cement concreteMelo, Aluísio Bráz de 10 March 2000 (has links)
Os investimentos iniciais em moldes na indústria de pré-moldados de concreto de cimento Portland, em geral, são altos, havendo a necessidade de utilizá-los o mais intensivamente possível entre uma e outra moldagem. A conseqüência é que a desforma pode ocorrer em instantes inadequados, comprometendo a durabilidade do produto. Isto contraria o conceito fundamental da pré-moldagem que está relacionado ao rigoroso controle de qualidade do produto. A cura térmica é uma alternativa, pois é utilizada para acelerar a resistência mecânica inicial do concreto. Esse beneficio imediato é acompanhado por uma redução na resistência final comparativamente à cura normal em câmara úmida. Esta redução é atribuída ao desenvolvimento de uma microestrutura modificada. Para investigar esse fenômeno, com base nos conhecimentos em ciência e engenharia dos materiais, desenvolve-se um estudo experimental, aplicado a pré-moldados com pequena espessura. O objetivo principal é analisar tais modificações e os compostos hidratados, formados ao longo do tempo após a cura térmica, considerando os materiais empregados e estabelecendo relações com a perda de resistência final. Leva-se em conta a influência das adições e da duração dos ciclos térmicos. A análise da microestrutura está baseada nos seguintes ensaios: porosimetria por intrusão de mercúrio, microscopia eletrônica de varredura, termogravimetria e difração de raio-X. Confirma-se com base nos resultados que a cura térmica favorece a maior formação de portlandita e também acelera a reação pozolânica. Para a composição entre cimento Portland, a escória de alto forno (30%) e a sílica ativa (10%), submetidas a ciclos térmicos longos (12 horas Tmax=61°C), observa-se a maior perda na resistência mecânica a longo prazo. Neste caso, há fortes indícios de que há formação de fases com menor desempenho mecânico. Através de micrografias, para essa amostra, sugere-se a formação da etringita secundária com maior prejuízo na interface pasta-agregado. As conclusões sugerem que para minimizar as interferências no processo de cura e garantir resistências mínimas nas desmoldagens rápidas, com poucas perdas a longo prazo, é interessante associar ciclos térmicos curtos, cimento de alta resistência inicial, sílica ativa e superplastificante. / The initial investments of molds in the industry which makes pre-cast of Portland cement concrete is usually very high, thus creating a necessity to maximize the utilization of each moldings. The consequence is that the forms can be removed at inadequate time, which compromise the durability of the product. This contradicts the fundamental concepts of the pre-castings, which is related to a severe quality control. Steam curing is an alternative treatment and is used to accelerate the initial mechanical resistance of the concrete. This immediate benefit is accompanied by the decrease on final resistance compared to normal curing in humid chamber. This reduction is attributed to the development of a modified microstructure. To investigate this phenomenon, based on knowleledge of materials science and engineering, an experimental study is developed which is applied in pre-cast wich small thichness. The main objective of this work is to analyze the microstructure modifications and the hydrated compounds formed, after a period of steam curing, taking in account the used materiaIs, also to establish a relations with the loss of final strength. The influence of additions and duration of steam cycles are considered. The analyses of microstructures are based on the following tests: mercury intrusion porosimetry, scanning electron microscope, thermogravimetry and X-ray diffraction. Based on the results it can be confirmed that steam curing favors a large formation of ponlandite and also accelerates pozzolanic reaction. For the composition of Portland cement, slag fumace blast (30%) and active silica (10%), submitted for long period of thermal cycles (12 hours, Tmax=61°C), a great loss strength was observed. In this case it is possible the formation of phases with poor mechanical performance. Through micrographs, for this sample, it is observed the formation of secondary ettringite with a large damage in the interface aggregate-paste. The conclusions suggest that to minimize the interference in the process of curing and to guarantee a minimum strength during the rapid separation of the concrete from the molds, with a minor loss in a long term, it is interesting to associate short steam cycles, high initial resistance cement, adive silica and superplasticizer.
|
28 |
Influência da cura térmica (vapor) sob pressão atmosférica no desenvolvimento da microestrutura dos concretos de cimento Portland / The influence of steam curing in development of microstructure of Portland cement concreteAluísio Bráz de Melo 10 March 2000 (has links)
Os investimentos iniciais em moldes na indústria de pré-moldados de concreto de cimento Portland, em geral, são altos, havendo a necessidade de utilizá-los o mais intensivamente possível entre uma e outra moldagem. A conseqüência é que a desforma pode ocorrer em instantes inadequados, comprometendo a durabilidade do produto. Isto contraria o conceito fundamental da pré-moldagem que está relacionado ao rigoroso controle de qualidade do produto. A cura térmica é uma alternativa, pois é utilizada para acelerar a resistência mecânica inicial do concreto. Esse beneficio imediato é acompanhado por uma redução na resistência final comparativamente à cura normal em câmara úmida. Esta redução é atribuída ao desenvolvimento de uma microestrutura modificada. Para investigar esse fenômeno, com base nos conhecimentos em ciência e engenharia dos materiais, desenvolve-se um estudo experimental, aplicado a pré-moldados com pequena espessura. O objetivo principal é analisar tais modificações e os compostos hidratados, formados ao longo do tempo após a cura térmica, considerando os materiais empregados e estabelecendo relações com a perda de resistência final. Leva-se em conta a influência das adições e da duração dos ciclos térmicos. A análise da microestrutura está baseada nos seguintes ensaios: porosimetria por intrusão de mercúrio, microscopia eletrônica de varredura, termogravimetria e difração de raio-X. Confirma-se com base nos resultados que a cura térmica favorece a maior formação de portlandita e também acelera a reação pozolânica. Para a composição entre cimento Portland, a escória de alto forno (30%) e a sílica ativa (10%), submetidas a ciclos térmicos longos (12 horas Tmax=61°C), observa-se a maior perda na resistência mecânica a longo prazo. Neste caso, há fortes indícios de que há formação de fases com menor desempenho mecânico. Através de micrografias, para essa amostra, sugere-se a formação da etringita secundária com maior prejuízo na interface pasta-agregado. As conclusões sugerem que para minimizar as interferências no processo de cura e garantir resistências mínimas nas desmoldagens rápidas, com poucas perdas a longo prazo, é interessante associar ciclos térmicos curtos, cimento de alta resistência inicial, sílica ativa e superplastificante. / The initial investments of molds in the industry which makes pre-cast of Portland cement concrete is usually very high, thus creating a necessity to maximize the utilization of each moldings. The consequence is that the forms can be removed at inadequate time, which compromise the durability of the product. This contradicts the fundamental concepts of the pre-castings, which is related to a severe quality control. Steam curing is an alternative treatment and is used to accelerate the initial mechanical resistance of the concrete. This immediate benefit is accompanied by the decrease on final resistance compared to normal curing in humid chamber. This reduction is attributed to the development of a modified microstructure. To investigate this phenomenon, based on knowleledge of materials science and engineering, an experimental study is developed which is applied in pre-cast wich small thichness. The main objective of this work is to analyze the microstructure modifications and the hydrated compounds formed, after a period of steam curing, taking in account the used materiaIs, also to establish a relations with the loss of final strength. The influence of additions and duration of steam cycles are considered. The analyses of microstructures are based on the following tests: mercury intrusion porosimetry, scanning electron microscope, thermogravimetry and X-ray diffraction. Based on the results it can be confirmed that steam curing favors a large formation of ponlandite and also accelerates pozzolanic reaction. For the composition of Portland cement, slag fumace blast (30%) and active silica (10%), submitted for long period of thermal cycles (12 hours, Tmax=61°C), a great loss strength was observed. In this case it is possible the formation of phases with poor mechanical performance. Through micrographs, for this sample, it is observed the formation of secondary ettringite with a large damage in the interface aggregate-paste. The conclusions suggest that to minimize the interference in the process of curing and to guarantee a minimum strength during the rapid separation of the concrete from the molds, with a minor loss in a long term, it is interesting to associate short steam cycles, high initial resistance cement, adive silica and superplasticizer.
|
29 |
Aktivace vysokoteplotního popílku přídavkem popílku fluidního pro výrobu betonu / Activation of high ash addition of fly ash for concrete production fluidŤažký, Martin January 2016 (has links)
Secondary energy products are used in the construction industry for a long time. More strict environmental limits for emissions to air have created new technologies combustion of materials in thermal power plants. In this way combustion are produced a new secondary energy products. It is an attempt to find of suitable use for these products. Their use will have ecological impact on the environment and it will allow prepare of new compositions of higher utility properties. The aim of this study was to develop a new mixture, using the new secondary energy products, for production concrete with high utility properties.
|
30 |
Sulfate Induced Heave: Addressing Ettringite Behavior in Lime Treated Soils and in Cementitious MaterialsKochyil Sasidharan Nair, Syam Kumar 2010 December 1900 (has links)
Civil engineers are at times required to stabilize sulfate bearing clay soils with calcium based stabilizers. Deleterious heaving in these stabilized soils may result over time. This dissertation addresses critical questions regarding the consequences of treating sulfate laden soils with calcium-based stabilizers. The use of a differential scanning calorimeter was introduced in this research as a tool to quantify the amount of ettringite formed in stabilized soils.
The first part of this dissertation provides a case history analysis of the expansion history compared to the ettringite growth history of three controlled low strength mixtures containing fly ash with relatively high sulfate contents. Ettringite growth and measurable volume changes were monitored simultaneously for mixtures subjected to different environmental conditions. The observations verified the role of water in causing expansion when ettringite mineral is present. Sorption of water by the ettringite molecule was found to be a part of the reason for expansion.
The second part of this dissertation evaluates the existence of threshold sulfate levels in soils as well as the role of soil mineralogy in defining the sensitivity of soils to sulfate-induced damage. A differential scanning calorimeter and thermodynamics based phase diagram approach are used to evaluate the role of soil minerals. The observations substantiated the difference in sensitivity of soils to ettringite formation, and also verified the existence of a threshold level of soluble sulfates in soils that can trigger substantial ettringite growth.
The third part of this dissertation identifies alternative, probable mechanisms of swelling when sulfate laden soils are stabilized with lime. The swelling distress observed in stabilized soils is found to be due to one or a combination of three separate mechanisms: (1) volumetric expansion during ettringite formation, (2) water movement triggered by a high osmotic suction caused by sulfate salts, and (3) the ability of the ettringite mineral to absorb water and contribute to the swelling process.
|
Page generated in 0.0652 seconds