Spelling suggestions: "subject:"cementitious"" "subject:"cementititous""
171 |
Použitelnost ložového popele z vitrifikovaného lignitového uhlí v kompozitních cementech. / Suitability of vitrified lignite bottom ash for composite cements.Bayer, Petr January 2014 (has links)
Předložená magisterská práce se zabývá možným použitím vitrifikovaného lignitového lóžového popele jako náhrada slinku v kompozitních cementech. Byly zkoumány vlivy přidaného vitrifikovaného lóžového popele, jeho jemnosti, alkalických roztoků a jejich koncentrací. Byly připraveny kompozitní cementy v souladu s normou DIN EN 197 – 1. V těchto cementech bylo nahrazeno 30 % slinku vitrifikovaným lóžovým popelem. Konkrétně byly připraveny kompozitní cementy s vitrifikovaným lóžovým popelem o jemnosti 5549 cm2/g a 8397 cm2/g. Dále byly přidány alkalické roztoky hydroxidů a síranů vždy o dvou různých koncentracích, za účelem stimulace pucolánové a/nebo geopolymerní reakce. Mechanické vlastnosti připravených vzorků byly charakterizovány mechanickým testováním na prizmách s rozměry 40×40×160 mm, jak je specifikováno v normě DIN EN 196 – 1. Byla provedena nedestruktivní měření dynamického elastického modulu a destruktivní testovaní na pevnosti v tlaku a v ohybu. Distribuce velikosti částic a chemická analýza vstupních materiálů byla vykonána pomocí laserové granulometrie a rentgenové fluorescence. U zatvrdlých kompozitů bylo dále zkoumáno po 2 a 28 dnech hydratace fázové složení s využitím metody rentgenové difrakce a mikrostruktura s využitím skenovací elektronové mikroskopie. Výsledky ukázaly, že mechanické vlastnosti jsou nezávislé na množství přidaných alkálií stejně jako na jemnosti přidaného vitrifikovaného lóžového popele. Nicméně, znatelně nižší mechanické pevnosti byly pozorovány pro vzorky, které byly aktivovány hydroxidy, pravděpodobně kvůli brzké tvorbě silikátového hydrogelu. Vzorky aktivované sírany nedosáhly pevností jako referenční malta.
|
172 |
Fibre-matrix interaction in mineral-bonded composites under dynamic loadingWölfel, Enrico 22 February 2022 (has links)
Short fibres of different materials are used for crack bridging in strain-hardening cement-based composites (SHCC). Their mechanical properties and the fibre-matrix interphase on the micro level have a significant influence on the macroscopic component properties. Investigations on the specific modification and adaptation of fibre properties in relation with the failure mechanisms at different strain rates hardly exist so far, since mainly commercially available fibres are used. In the frame of this work, two different fibre types – polypropylene (PP) fibres and alkali-resistant (AR) glass fibres – were produced on lab spinning devices and the properties were adapted in such a way that fundamental correlations between the influence of fibre geometry, mechanical properties, chemical functionalities and surface structure on the behaviour during fibre pull-out from the concrete matrix can be derived. The PP fibres were produced with different degrees of stretching, cross-sectional geometries (circular, trilobal) and fibre diameters, as well as without and with sizing. The resulting changes in the crystallinity of the PP structure, surface roughness and wetting behaviour could be demonstrated by differential scanning calorimetry (DSC), roughness measurements by atomic force microscopy (AFM), and contact angle measurements. AR glass fibres were used in the unsized state and various chemical surface treatments were applied. Aqueous polymer dispersions of different materials were characterized in detail regarding particle size, pH value, solid content, and surface tension. In addition, their film-forming properties were evaluated using prepared polymer films. Furthermore, the influence of cross-linking agents on the thermal and mechanical stability of polyurethane sizings was investigated using thermal analysis methods. After application of the sizings to the AR glass surface, changes in surface structure and roughness could be observed by scanning electron microscopy (SEM) and AFM. The amount of sizing, or rather the polymer content on the fibres, was systematically increased and investigated in the non-cross-linked and cross-linked state with respect to energy absorption during fibre pull-out. Using a high-strength concrete matrix, all modified PP and AR glass fibres were used to produce and test single-fibre model composites by single-fibre pull-out tests, whereby the fibre pull-out was either quasi-static or dynamic. Based on the test results, design strategies for PP and AR glass fibres were derived at the end of the thesis. / Für die Rissüberbrückung in hochduktilen Betonen (Strain-Hardening Cement-based Composites – SHCC) werden Kurzfasern verschiedener Materialien eingesetzt. Ihre mechanischen Eigenschaften und die Faser-Matrix-Grenzschicht auf der Mikroebene beeinflussen die makroskopischen Bauteileigenschaften deutlich. Untersuchungen zur gezielten Veränderung und Anpassung von Fasereigenschaften im Zusammenhang mit den Versagensmechanismen bei unterschiedlichen Dehnraten existieren bisher kaum, da überwiegend kommerziell verfügbare Fasern eingesetzt werden. Im Rahmen dieser Arbeit wurden daher zwei verschiedene Fasertypen – Polypropylen (PP)-Fasern und alkaliresistente (AR)-Glasfasern – an Laborspinnanlagen selbst hergestellt und die Eigenschaften so angepasst, dass sich grundlegende Zusammenhänge zwischen dem Einfluss von Fasergeometrie, mechanischen Eigenschaften, chemischen Funktionalitäten und Oberflächenstruktur auf das Verhalten bei Faserauszug aus der Betonmatrix ableiten lassen. Die PP-Fasern wurden mit verschiedenen Verstreckungsgraden, Querschnittsgeometrien (rund, trilobal), Faserdurchmessern sowie ohne und mit Schlichte hergestellt. Die dadurch hervorgerufenen Eigenschaftsveränderungen hinsichtlich Kristallinität der PP-Struktur, der Oberflächenrauheit und des Benetzungsverhaltens konnten durch dynamische Differenzkalorimetrie (DSC), Rauheitsmessungen mittels Rasterkraftmikroskopie (AFM) und Kontaktwinkelmessungen nachgewiesen werden. AR-Glasfasern wurden im ungeschlichteten Zustand verwendet und verschiedene chemische Oberflächenbehandlungen durchgeführt. Es wurden wässrige Polymerdispersionen verschiedener Materialien detailliert hinsichtlich ihrer Partikelgröße, pH-Wert, Feststoffgehalt und Oberflächenspannung charakterisiert sowie ihre Filmbildungseigenschaften anhand hergestellter Polymerfilme bewertet. Weiterhin wurde der Einfluss von Vernetzern auf die thermische und mechanische Stabilität von Polyurethanschlichten mit Methoden der thermischen Analyse untersucht. Nach dem Applizieren der Schlichten auf die AR-Glasoberfläche konnten Veränderungen der Oberflächenstruktur und Rauheit mit Rasterelektronenmikroskopie (REM) sowie AFM beobachtet werden. Die Schlichtemenge bzw. der Polymeranteil auf den Fasern wurde systematisch erhöht und im unvernetzten sowie vernetzten Zustand hinsichtlich der Energieabsorption bei Faserauszug untersucht. Mit allen modifizierten PP-Fasern und AR-Glasfasern wurden unter Einsatz einer hochfesten Betonmatrix Einzelfaser-Modellverbunde zur Durchführung von Einzelfaserauszugversuchen (Single-Fibre Pull-Out) hergestellt und geprüft, wobei der Faserauszug entweder quasistatisch oder dynamisch erfolgte. Basierend auf den Versuchsergebnissen wurden am Ende der Arbeit für PP-Fasern und AR-Glasfasern Designstrategien abgeleitet.
|
173 |
Analýza napjatosti a porušení ve zkušebních tělesech používaných pro určování lomově-mechanických parametrů kvazikřehkých materiálů / Analysis of stress state and failure in test specimens used for determination of fracture-mechanical parameters of quasi-brittle materialsHolušová, Táňa January 2012 (has links)
The thesis is focused on a test on determination of the fracture-mechanical parameters of quasi-brittle materials, especially concrete. What is referred to as the wedge-splitting test is considered, for which a variety of shapes of notched specimen can be used. This work is exclusively focused on the cylinder-shaped specimen of diameter 150 mm and breadth of 100 mm. The test is performed virtually using Atena 2D FEM software. Progress of failure is observed during loading of the specimen for various notch lengths. The amount of energy released for the development the failure outside of the tested cross-sectional area (weakened by the notch) is quantified and the size of the fracture process zone is investigated. The described analysis is performed for several material sets witch differ in cohesive properties of the quasi-brittle material expressed via the so-called characteristic length. Suitable proportions of the test specimen are sought, in order to avoid the failure and thus also the energy dissipation outside of the specimen ligament area during the experimental tests, which shall lead to more accurate estimates of fracture-mechanical parameters of the tested material.
|
174 |
Měření akustických vlastností stavebních materiálů pomocí pseudonáhodné sekvence / Measurement of Acoustic Parameters of Building Materials by Pseudorandom SequenceCarbol, Ladislav January 2017 (has links)
The thesis deals with research of pulse compression of the acoustic signal in terms of applications in civil engineering. Based on the study and analysis of these methods, automated measuring equipment for non-destructive testing with pseudorandom sequence of maximum length and automated signal analysis, have been designed and implemented. In a single test cycle are obtained three parameters that characterize the linear and nonlinear behavior of the sample. A nonlinear parameter, Time of Flight of ultrasonic wave in the sample is further in the work compared with the conventional pulse measuring, and spectral analysis is compared with the method impact-echo. Functionality and optimization of the testing method was performed on a total of three sets of test pieces made of various building materials. The experiments proved simple result interpretation, and high sensitivity to structural damage associated with temperature loading. The results were correlated with conventional nondestructive methods and by destructive testing was measured change in compressive strength and flexural strength. This work also includes continual measurement of fundamental frequency influenced by moisture on a mortar sample. Use of pulse compression signal is in the civil engineering quite unusual. Only in recent years this topic is discussed in scientific articles with increasing frequency. Great potential lies in the association of three test methods into a single. Beneficial is high test speed and measurement reproducibility, but also theoretical possibility of testing massive test elements.
|
175 |
Miljö - och kostnadsanalys av UHPC som reparationsmaterial för bropelare / Sustainability of UHPC as a repair material for bridge piersHuq, Saraj, Milosevic, Ivan January 2020 (has links)
Byggindustrin har i dagsläget en negativ klimatpåverkan och infrastrukturen likaså. Många länder har därför försökt undersöka möjligheten att hitta ett långsiktigt och hållbart alternativ till det konventionella reparationsmaterialet. Olika material undersöks, olika optimerade betongrecept testas för att förstå hur miljöpåverkan har minimeras för att förlänga livslängden hos betongkonstruktioner. Vid reparation av en bro är det viktigt att ta hänsyn till både kostnader och miljöpåverkan under hela dess livscykel. Kostnader som uppstår är investeringskostnader samt drift- och underhållskostnader. Miljöpåverkan från betongkonstruktioner i produkt skedet består av materialframställning, byggtransporter och produktion på byggarbetsplatserna. totala växthusgasutsläppet summeras och beräknas i kg CO2-ekv. Syftet med detta examensarbete är att studera den långsiktiga hållbarheten hos UHPC med hjälp av beräkningsmodeller såsom livscykelanalys och livscykelkostnadsanalys med avsikt att applicera reparationstekniken. Flera UHPC recept ställs mot det konventionella reparationsmaterialet detta för att kunna bedöma miljöpåverkan och kostnadseffektiviteten hos materialen. Dvs om det går det att minska klimatutsläppet och kostnaderna. De jämförda recepten är olika UHPC-recept samt traditionell betong. Recepten appliceras slutligen på en befintlig bropelare för att undersöka de olika receptens tillämpbarhet som reparationsmaterial ur ett hållbarhetsperspektiv. Det saknas tillräckligt med kunskap om UHPC:s långtidseffekter, speciellt om reparationsintervall. Med åtanke på materialets höga draghållfasthet och beständighet tillsammans med UHPC:s strukturella egenskaper har antaganden gjorts att materialet är reparationsfri under konstruktionens livslängd. Det vill säga att bropelaren som undersökts med UHPC i studien inte behövt repareras under sin livslängd. Resultatet från livscykelkostnadsanalysen visar att UHPC är dyrare i både kubikmeter (m3) och kvadratmeter (m2) med tanke på täckskiktets tjocklek än traditionell betong i materialpriset. Men med tanke på att UHPC är underhållsfritt har den en mindre livscykelkostnad. Resultatet från livscykelanalysen visar att UHPC blandningarna har större miljöpåverkan per kubikmeter. Då de olika täckskiktetstjocklek relateras till pelarens längd erhålls resultat där UHPC medför slankare konstruktioner och besparingar upp emot 50% mindre betongvolym (för den 6 m långa pelaren i fallstudien). Med UHPC som reparationsmaterial medför det till att bron inte behöver repareras under dess livslängd. Bropelaren som repareras med UHPC kommer därför ha en mindre miljöpåverkan än den traditionella betongen. Långsiktig hållbarhet och mindre totala växthusgasutsläpp (som är i riktlinje med EU:s och regeringens klimatkrav) erhålls för anläggningskonstruktioner med UHPC. / The construction industry has a negative climate impact and so does the infrastructure. Which is due to frequent repairs that are not sustainable. Many countries have therefore tried to explore the possibility of finding a long-term and sustainable alternative to conventional repair materials. Different materials are examined, different optimized concrete recipes are tested to understand how the environmental impact can be minimized and the service life of concrete structures extended. When repairing a bridge, it is important to take into account both costs and environmental impact throughout its life cycle. Costs that arise are investment costs as well as operating and maintenance costs. The environmental impact from concrete structures in the product phase consists of material production, construction transports and production at construction sites. The total greenhouse gas emissions are summed up and calculated in kg CO2 eq. The purpose of this thesis is to study the long-term sustainability of UHPC using calculation models such as life cycle analysis and life cycle cost analysis with the intention of applying the repair technique. Several UHPC prescriptions are set against the conventional repair material in order to be able to assess the environmental impact and cost-effectiveness of the materials. That is, if it is possible to reduce climate emissions and costs. The compared recipes are different UHPC recipes and traditional concrete. The recipes are finally applied to an existing bridge pillar to investigate the applicability of the various recipes as repair materials from a sustainability perspective. There is a lack of knowledge about the long-term effects of UHPC, especially about repair intervals. Given the high tensile strength and durability of the material together with the structural properties of the UHPC, it has been assumed that the material is repair-free for the life of the structure. That is, the bridge pillar examined with UHPC in the study did not need to be repaired during its lifetime. The results from the life cycle cost analysis show that UHPC is more expensive in both cubicmeters (m3) and square meters (m2) given the thickness of the cover layer than traditional concrete in the material price. However, given that UHPC is maintenance free, it has a lower lifecycle cost. The results from the life cycle analysis show that the UHPC mixtures have a greater environmental impact per cubic meter when the cover layer varies. As the thickness of the different cover layers is related to the length of the pillar, results are obtained where UHPC leads to slimmer constructions and savings of up to 50% less concrete volume (for the 6 m long pillar in the case study). With UHPC as repair material, this means that the bridge does not need to be repaired during its service life. The bridge pillar that is repaired with UHPC will therefore have a smaller environmental impact than the traditional concrete. Long-term sustainability and smaller total greenhouse gas emissions (which are in line with EU and government climate requirements) are obtained for plant constructions with UHPC.
|
Page generated in 0.0813 seconds