• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 6
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 36
  • 11
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Characteristics of Primary Cilia and Centrosomes in Neuronal and Glial Lineages of the Adult Brain

Bhattarai, Samip Ram 05 1900 (has links)
Primary cilia are sensory organelles that are important for initiating cell division in the brain, especially through sonic hedgehog (Shh) signaling. Several lines of evidence suggest that the mitogenic effect of Shh requires primary cilia. Proliferation initiated by Shh signaling plays key roles in brain development, in neurogenesis in the adult hippocampus, and in the generation of glial cells in response to cortical injury. In spite of the likely involvement of cilia in these events, little is known about their characteristics. Centrosomes, which are associated with primary cilia, also have multiple influences on the cell cycle, and they are important in assembling microtubules for the maintenance of the cell’s cytoskeleton and cilia. The cilia of terminally differentiated neurons have been previously examined with respect to length, incidence, and receptors present. However, almost nothing is known about primary cilia in stem cells, progenitors, or differentiated glial cells. Moreover, it is not known how the properties of cilia and centrosomes may vary with cell cycle or proliferative potential, in brain or other tissues. This dissertation focuses first on neurogenesis in the hippocampal subgranular zone (SGZ). The SGZ is one of the few brain regions in mammals that gives rise to a substantial number of new neurons throughout adulthood. The neuron lineage contains a progression of identifiable precursor cell types with different proliferation rates. This present study found that primary cilia were present in every cell type in the neuronal lineage in SGZ. Cilium length and incidence were positively correlated among these cell types. Ciliary levels of adenylyl cyclase type III (ACIII) levels relative to ADP-ribosylation factor-like protein 13b (Arl13b) was higher in neurons than in precursor cells and glia, and also changed with the cell cycle. G-protein coupled receptors, SstR3, MCHR1, and Gpr161 receptors were only found in neuronal cilia. The levels and distribution of three centrosomal proteins, γ-tubulin, pericentrin and cenexin in neurons was different from the distributions in precursors and glia. The second focus of study is glial responses to injury in the neocortex, which has been widely studied as an injury model. This study found that in the normal adult somatosensory cortex, primary cilia were present in astrocytes and polydendrocytes but not in microglia. Following injury, the incidence of primary cilia decreased in astrocytes. Also, a new cell type expressing GFAP, NG2 and Olig2 was seen 3 days following injury, but was not present in normal mice. The characteristics of primary cilia and centrosome described here suggest that in stem cells and progenitors their characteristics may be well suited for proliferation, whereas in neurons, the cilia and centrosomes are important for other sensory functions.
12

Studying centrosome formation and the consequences of centrosome loss in Drosophila melanogaster

Baumbach, Janina January 2014 (has links)
Centrioles are conserved microtubule-based structures that are required for the formation of two important cellular organelles, centrosomes and cilia. Centrosomes form the poles of the mitotic spindle and consist of a pair of centrioles surrounded by a matrix of pericentriolar material (PCM) that has the ability to nucleate and organise microtubules. Centrosome defects are implicated into a variety of human diseases including cancer, microcephaly, and ciliopathies. Therefore it is of great interest to understand the mechanisms that lead to centrosome formation and the consequences that centrosome defects have in cells. I have analysed the roles of several centrosomal proteins in centrosome assembly in Drosophila. My results indicate that Sak/PLK4 is only required for the initial step of centriole duplication, but has no further role in recruitment of PCM. I show that two proteins important for PCM recruitment, Asterless (Asl) and Spd-2, are preferentially phosphorylated when they are integrated into the centrosome and I identified these phosphorylation sites using a phosphoproteomic screen. A phosphorylation site in Asl is specifically phosphorylated in mitosis, and the phosphorylation state of Spd-2 regulates its maintenance at the centrosome, suggesting that phosphorylation of PCM proteins is an important mechanism to ensure PCM assembly specifically at the centrosome and in mitosis. I have performed a global transcriptional analysis of flies lacking centrosomes or having extra centrosomes to investigate the effects of centrosomal defects on a cellular level. Surprisingly, my results indicate that centrosome defects per se do not dramatically alter cellular physiology. Finally, I demonstrate that in the absence of centrioles acentrosomal microtubule-organising centres (aMTOCs) are formed in an Asl- and Cnn-dependent fashion, and I show that these aMTOCs can contribute to spindle focusing in acentrosomal cells.
13

Characterisation of a novel spindle domain in mammalian meiosis

Seres, Karmen Bianka January 2019 (has links)
The organisation of microtubule networks into a bipolar spindle is essential for reliable chromosome segregation during cell division. A pair of centrioles surrounded by pericentriolar material (PCM), define the canonical centrosome that acts as the main microtubule organising centre (MTOC) during mitosis. In mammalian meiosis, centrioles are eliminated early on during oogenesis. Despite the absence of centrosomes, a large number of centrosomal proteins are highly expressed in mouse oocytes. Here, I characterise the localisation and function of centrosomal proteins at a previously undescribed meiotic spindle pole domain (MSPD). An initial protein screen identified a group of pericentriolar satellite proteins that localised to a previously undescribed spindle pole domain throughout meiotic maturation in mouse oocytes, including Pericentriolar material 1 protein (PCM1). This domain was distinct from spindle microtubules and the acentrosomal microtubule organising centres (aMTOCs). Initial characterisation focused on PCM1, the main centriolar satellite scaffold protein in somatic cells. Depletion of PCM1 revealed interdependence with the essential aMTOC component, Pericentrin. In the absence of PCM1, aMTOCs could no longer assemble or maintain their structural integrity. PCM1 degradation and disassembly of aMTOCs disrupted spindle assembly and reduced the total amount of nucleated microtubules throughout meiosis. In the absence of the main microtubule nucleating aMTOCs, oocytes relied on the Ran GTPase activity to form a small bipolar spindle. A similar mechanism was previously reported in human oocytes that lack prominent MTOCs. The extended centrosomal protein screen identified additional components of the MSPD. TACC3, under the regulation of Aurora-A at aMTOCs, drive assembly of the MSPD. This domain was absent in MTOC free human oocytes but a second population of TACC3 (identified in mouse oocytes) localised to the meiotic spindle and K-fibres was essential for maintaining spindle pole integrity. Establishing the Lightsheet Z.1 system for live cell imaging of human oocytes enabled us to observe the dynamic distribution of TACC3 in these oocytes. In the absence of prominent MTOCs and the MSPD, human oocytes likely rely on other spindle assembly factors and motor proteins to organise their spindle. Future work to address if the absence of the MSPD could account (in part) for the observed spindle instability in human oocytes is an exciting outlook.
14

ARL13B and IFT172 truncated primary cilia and misplaced cells

Pruski, Michal January 2017 (has links)
Primary cilia are cellular organelles that protrude into the extracellular space, acting as antennas. They detect a wide range of chemical cues, including SHH and PDGF, as well as fluid flow, and they modulate downstream signalling systems, such as WNT and ERK. Due to this cue-sensing ability and the close association of the primary cilium with the centrosome the organelle is able to influence both cell cycle progression and cell migration. This work investigated the effect of mutations on two genes associated with primary cilia: Arl13b and Ift172. The effects of the HNN genotype of Arl13b and the WIM genotype of Ift172 on cell migration were assessed uniquely within the context of direct current electric fields. Both cell lines showed a decreased migratory response when compared to WT cells, despite no clear involvement of cilia in sensing the direction of the electric field. This corroborated with previous data of in vivo Arl13b cellular migration. Through the use of in utero electroporation the migratory deficits of IFT172 knock down were then confirmed in vivo in the developing mouse neocortex. Further in vitro investigation revealed a slower proliferation rate of HNN and WIM cells, though this was not confirmed in vivo after IFT172 knock down using a standard BrDU protocol. Nevertheless, further in vitro investigations revealed a wide variety of cell cycle and intracellular changes within both cell lines. The commonalities included lower numbers of cells in the S-phase and lower MAPK3 phosphorylation compared to WT, and differences such as GSK3β phosphorylation on Ser9. This work showed for the first time that ciliopathies affect galvanotaxis, and revealed fundamental commonalities in cell migration and proliferation between various ciliary mutations, as well as differences in specific signalling pathways. This will hopefully aid in developing future therapeutic interventions for ciliary diseases.
15

Rôle des centrosomes dans la régulation du point de contrôle en G2/M en réponse aux dommages à l'ADN

Barbelanne, Marine 05 1900 (has links)
Les centrosomes sont les centres organisateurs des microtubules et jouent un rôle crucial dans l’organisation du fuseau bipolaire pendant la mitose. Plus récemment, le rôle des centrosomes dans la régulation de l’entrée en mitose a été mis en évidence. Les centrosomes semblent également contribuer à l’activation du point de contrôle en G2/M en réponse aux lésions de l’ADN en servant de point de rencontre pour les régulateurs du cycle cellulaire et les gènes de réponse aux dommages à l’ADN. L’amplification du nombre de centrosomes est une caractéristique des cellules tumorales mais de façon intéressante, elle constitue aussi une réponse des cellules aux dommages à l’ADN. Les mécanismes qui régulent l’homéostasie et la dynamique des centrosomes sont encore mal compris. Pour mieux comprendre le rôle des centrosomes dans la régulation du point de contrôle en G2/M en réponse aux dommages à l’ADN, le recrutement et/ou l’activation au niveau des centrosomes des kinases impliquées dans les voies de signalisation de ce point de contrôle ont été étudiés par immunofluorescence indirecte sur cellules HeLaS3 ou par Western blot sur des fractions enrichies en centrosomes. Nos résultats montrent que les kinases ATM, ATR, CHK1 et CHK2 sont actives dans les centrosomes de cellules en phase G2. En réponse à l’activation du point de contrôle en G2/M, les formes actives de ces kinases diminuent au niveau des centrosomes. Pour identifier de nouveaux acteurs centrosomaux potentiellement impliqués dans la régulation de ce point de contrôle, une analyse comparative des protéomes de centrosomes purifiés a également été réalisée par spectrométrie de masse. Pour étudier plus particulièrement la fonction de CHK2 au niveau des centrosomes, nous avons développer des outils moléculaires qui serviront à déterminer le rôle de la sous population de CHK2 localisée aux centrosomes 1) dans la régulation de l’entrée en mitose au cours d’un cycle normal 2) dans l’activation et la stabilité du point de contrôle en G2/M en réponse aux lésions l’ADN et 3) dans l’homéostasie et la dynamiques des centrosomes en réponse aux dommages à l’ADN. Cette étude permettra de mieux comprendre la fonction des centrosomes dans la réponse cellulaire au stress génotoxiques anti-cancereux et de révéler de nouvelles fonctions potentielles pour la kinase CHK2. / Centrosomes function primarily as microtubule-organizing centres that play a crucial rôle in the equal segregation of chromosomes by organizing the bipolar spindle during mitosis. Recent studies have revealed the involvement of centrosomes in regulating G2/M transition during normal cell cycle progression. Moreover, increasing evidence suggests that centrosomes also play roles in the DNA damage response and cell cycle checkpoint signalling by serving as “meeting points” where DNA-damage-responsive genes and cell cycle regulators communicate. Numerical centrosome aberrations, or centrosome amplification, is a common feature of most human cancers that promotes aneuploidy and is involved in tumorigenesis as well as tumor progression. Interestingly, centrosome amplification and fragmentation have also been shown to constitute a cellular response to impaired DNA integrity that triggers cell death by mitotic failure. Although their roles are critical in tumorigenesis and the DNA damage response, the mechanisms that regulate centrosome homeostasis and dynamics remain poorly understood. To gain a better understanding of the role of the centrosomes in checkpoint regulation at G2/M transition in response to DNA damage; the recruitment and/or centrosomal activation of the kinases implicated in this checkpoint pathways were studied by indirect immunofluorescence on HeLaS3 cells or western blot on purified centrosomal fractions. Our results showed that the kinases CHK1, CHK2, ATM and ATR are activated at the centrosomes in cell synchronised in G2. However, after activation of the G2/M checkpoint, these activated kinases moved from centrosomes. Finally, to identify new centrosomal actors potentially involved in the regulation of this checkpoint, a comparative analysis of the proteome of purified centrosomes was also realized by mass spectrometry. To study more specifically the function of CHK2 at the centrosomes, we developped molecular tools wich will serve to determine the role of the sub-population of CHK2 localized at the centrosomes in 1) in regulating entry into mitosis during unperturbed cell cycle progression, 2) in checkpoint regulation at G2/M transition in response to DNA damage induced by ionizing radiations and genotoxic drugs and 3) in centrosomal homeostasis and dynamics by regulating centrosomal amplification, fragmentation and clustering during normal cell cycle progression and in response to genotoxic drugs. This study will further elucidate the importance of centrosomes in regulating the cell response to genotoxic stress induced by anti-cancer treatments and reveal potential new functions for the kinase CHK2 in unperturbed cell cycle progression and in response to DNA damage.
16

Définition du mécanisme de localisation des ARNm cen et ik2 aux centrosomes chez la Drosophile

Legendre, Félix 12 1900 (has links)
L’organisation cellulaire repose sur une distribution organisée des macromolécules dans la cellule. Deux ARNm, cen et ik2, montrent une colocalisation parfaite aux centrosomes. Ces deux gènes font partie du même locus sur le chromosome 2L de Drosophila melanogaster et leur région 3’ non traduite (3’UTR) se chevauchent. Dans le mutant Cen, le transport de Ik2 est perturbé, mais dans le mutant Ik2, la localisation de cen n’est aucunement affectée. Ces résultats suggèrent que cen est le régulateur principal de la co-localisation de cen et ik2 aux centrosomes et que cette co-localisation se produit par un mécanisme impliquant la région complémentaire au niveau du 3’UTR des deux transcrits. La localisation de cen au niveau des centrosomes dans les cellules épithéliales de l’embryon est conservée dans différentes espèces de Drosophile : D. melanogater, D. simulans, D. virilis et D. mojavensis. Cependant, la localisation de ik2 n’est pas conservée dans D. virilis et D. mojavensis, deux espèces dont les gènes cen et ik2 sont dissociés dans le génome. Ces résultats suggèrent que la proximité de Cen et Ik2 dans le génome est importante afin d’avoir un événement de co-localisation de ces deux transcrits. J’ai généré différentes lignées de mouches transgéniques dans lesquelles un transgène contenant la séquence GFP fusionnée à différentes partie de Cen (partie codante, 3’UTR, Cod+3’UTR) qui sont sous le contrôle du promoteur UAS et qui sont gal4 inductibles. La région codante de l’ARNm cen était suffisante pour avoir un ciblage précis du transcrit aux centrosomes. / Messenger RNA (mRNA) localization plays a key role in establishing cellular architecture and function. The centrocortin (cen) and IkB Kinase-like 2 (ik2) mRNAs are co-localized to centrosomes in embryonic epithelial cells. Interestingly, both of these genes are organized in a head-to-head configuration in the genome, with their 3’ untranslated regions (3’UTRs) overlapping on opposite DNA strands. Here we show that gene positioning of cen and ik2 is important for the co-localization of these transcripts during Drosophila embryogenesis. The localization of cen is conserved within the Drosophila phylogeny and ik2 cannot localize when it is separated from the cen locus. Also, loss of function mutants of cen show a complete loss of ik2 localization, proposing that cen is the main driver of the co-localization. Structure-function analysis revealed that the coding region of cen is necessary for its centrosomal targeting, suggesting that a cis-regulatory motif that drives its localization is located in the coding region. This study reveals for the first time the importance of gene positioning for RNA localization. We suggest a model where cen mRNA is the main driver of centrosomal localization, which may occur through post-transcriptional interaction/annealing of these mRNAs via their 3’UTRs.
17

Caractérisation du rôle d'Ensconsine / MAP7 dans la dynamique des microtubules et des centrosomes / A new role for Ensconsin / MAP7 in microtubule and centrosome dynamics

Gallaud, Emmanuel 23 April 2014 (has links)
La mitose est une étape essentielle du cycle cellulaire à l’issue de laquelle le génome répliqué de la cellule mère est ségrégé de façon équitable entre les deux cellules filles. Pour cela, la cellule assemble une structure hautement dynamique et composée de microtubules, appelée le fuseau mitotique. En plus d’assurer la bonne ségrégation des chromosomes, le fuseau mitotique détermine l’axe de division, un phénomène particulièrement important pour la division asymétrique où des déterminants d’identité cellulaire doivent être distribués de façon inéquitable entre les deux cellules filles. L’assemblage et la dynamique de ce fuseau sont finement régulés par de nombreuses protéines qui sont associées aux microtubules. Au cour de ma thèse, nous avons identifié 855 protéines constituant l’interactome des microtubules de l’embryon de Drosophile par spectrométrie de masse puis criblé par ARNi 96 gènes peu caractérisés pour un rôle en mitose dans le système nerveux central larvaire. Par cette approche, nous avons identifié 18 candidats sur la base de leur interaction aux microtubules et de leur phénotype mitotique, dont Ensconsine/MAP7. Nous avons montré qu’Ensconsine est capable de s’associer aux microtubules du fuseau et favorise leur polymérisation. De plus, les neuroblastes des larves mutantes présentent des fuseaux raccourcis et une durée de mitose prolongée. Ce délai en mitose est dû à une activation prolongée du point de contrôle du fuseau mitotique qui est essentiel pour une ségrégation correcte des chromosomes en l’absence d’Ensconsine. D’autres part, en association avec la Kinésine-1, son partenaire fonctionnel en interphase, nous avons montré qu’Ensconsine est également impliquée dans la séparation des centrosomes au cours de l’interphase. Ceci entraine une distribution aléatoire des centrosomes pères et fils dans cellules filles. Grâce à cette étude, nous avons révélé deux nouvelles fonctions pour Ensconsine : elle favorise la polymérisation des microtubules et participe donc à l’assemblage du fuseau mitotique et est impliquée, avec la Kinésine-1 dans la dynamique des centrosomes. / Mitosis is a key step of the cell cycle that allows the mother cell to segregate its replicated genome equally into the two daughter cells. To do so, the cell assembles a highly dynamic structure composed of microtubules called the mitotic spindle. Additionally to its role in the faithful segregation of chromosomes, the mitotic spindle defines the axis of cell division. This phenomenon is particularly important for the asymmetric cell division in which cell fate determinants have to be unequally distributed between the two daughter cells. Spindle assembly and dynamics are subtly regulated by numerous microtubules-associated proteins. During my PhD, we identified using mass spectrometry, 855 proteins establishing the Drosophila embryo microtubule interactome. An RNAi screen was performed in the larval central nervous system for 96 poorly described genes, in order to identify new mitotic regulators. Based on microtubule interaction and mitotic phenotype, among 18 candidates we focused on Ensconsin/MAP7. We have shown that Ensconsin is associated with spindle microtubules and promotes their polymerization. Neuroblasts from mutant larvae display shorter spindles and a longer mitosis duration. This mitotic delay is a consequence of an extended activation of the spindle assembly checkpoint, which is essential for the proper chromosome segregation in the absence of Ensconsin. This study also showed that, in association with its interphase partner Kinesin-1, Ensconsin is involved in centrosome separation during interphase. As a result, mother and daughter centrosomes are randomly distributed between the daughter cells. In conclusion, we highlighted two news functions of Ensconsin : first, this protein promotes microtubule polymerization and is involved in spindle assembly ; second, Ensconsin and its partner Kinesin-1 regulate centrosome dynamics.
18

Rôle des centrosomes dans la régulation du point de contrôle en G2/M en réponse aux dommages à l'ADN

Barbelanne, Marine 05 1900 (has links)
Les centrosomes sont les centres organisateurs des microtubules et jouent un rôle crucial dans l’organisation du fuseau bipolaire pendant la mitose. Plus récemment, le rôle des centrosomes dans la régulation de l’entrée en mitose a été mis en évidence. Les centrosomes semblent également contribuer à l’activation du point de contrôle en G2/M en réponse aux lésions de l’ADN en servant de point de rencontre pour les régulateurs du cycle cellulaire et les gènes de réponse aux dommages à l’ADN. L’amplification du nombre de centrosomes est une caractéristique des cellules tumorales mais de façon intéressante, elle constitue aussi une réponse des cellules aux dommages à l’ADN. Les mécanismes qui régulent l’homéostasie et la dynamique des centrosomes sont encore mal compris. Pour mieux comprendre le rôle des centrosomes dans la régulation du point de contrôle en G2/M en réponse aux dommages à l’ADN, le recrutement et/ou l’activation au niveau des centrosomes des kinases impliquées dans les voies de signalisation de ce point de contrôle ont été étudiés par immunofluorescence indirecte sur cellules HeLaS3 ou par Western blot sur des fractions enrichies en centrosomes. Nos résultats montrent que les kinases ATM, ATR, CHK1 et CHK2 sont actives dans les centrosomes de cellules en phase G2. En réponse à l’activation du point de contrôle en G2/M, les formes actives de ces kinases diminuent au niveau des centrosomes. Pour identifier de nouveaux acteurs centrosomaux potentiellement impliqués dans la régulation de ce point de contrôle, une analyse comparative des protéomes de centrosomes purifiés a également été réalisée par spectrométrie de masse. Pour étudier plus particulièrement la fonction de CHK2 au niveau des centrosomes, nous avons développer des outils moléculaires qui serviront à déterminer le rôle de la sous population de CHK2 localisée aux centrosomes 1) dans la régulation de l’entrée en mitose au cours d’un cycle normal 2) dans l’activation et la stabilité du point de contrôle en G2/M en réponse aux lésions l’ADN et 3) dans l’homéostasie et la dynamiques des centrosomes en réponse aux dommages à l’ADN. Cette étude permettra de mieux comprendre la fonction des centrosomes dans la réponse cellulaire au stress génotoxiques anti-cancereux et de révéler de nouvelles fonctions potentielles pour la kinase CHK2. / Centrosomes function primarily as microtubule-organizing centres that play a crucial rôle in the equal segregation of chromosomes by organizing the bipolar spindle during mitosis. Recent studies have revealed the involvement of centrosomes in regulating G2/M transition during normal cell cycle progression. Moreover, increasing evidence suggests that centrosomes also play roles in the DNA damage response and cell cycle checkpoint signalling by serving as “meeting points” where DNA-damage-responsive genes and cell cycle regulators communicate. Numerical centrosome aberrations, or centrosome amplification, is a common feature of most human cancers that promotes aneuploidy and is involved in tumorigenesis as well as tumor progression. Interestingly, centrosome amplification and fragmentation have also been shown to constitute a cellular response to impaired DNA integrity that triggers cell death by mitotic failure. Although their roles are critical in tumorigenesis and the DNA damage response, the mechanisms that regulate centrosome homeostasis and dynamics remain poorly understood. To gain a better understanding of the role of the centrosomes in checkpoint regulation at G2/M transition in response to DNA damage; the recruitment and/or centrosomal activation of the kinases implicated in this checkpoint pathways were studied by indirect immunofluorescence on HeLaS3 cells or western blot on purified centrosomal fractions. Our results showed that the kinases CHK1, CHK2, ATM and ATR are activated at the centrosomes in cell synchronised in G2. However, after activation of the G2/M checkpoint, these activated kinases moved from centrosomes. Finally, to identify new centrosomal actors potentially involved in the regulation of this checkpoint, a comparative analysis of the proteome of purified centrosomes was also realized by mass spectrometry. To study more specifically the function of CHK2 at the centrosomes, we developped molecular tools wich will serve to determine the role of the sub-population of CHK2 localized at the centrosomes in 1) in regulating entry into mitosis during unperturbed cell cycle progression, 2) in checkpoint regulation at G2/M transition in response to DNA damage induced by ionizing radiations and genotoxic drugs and 3) in centrosomal homeostasis and dynamics by regulating centrosomal amplification, fragmentation and clustering during normal cell cycle progression and in response to genotoxic drugs. This study will further elucidate the importance of centrosomes in regulating the cell response to genotoxic stress induced by anti-cancer treatments and reveal potential new functions for the kinase CHK2 in unperturbed cell cycle progression and in response to DNA damage.
19

Caractérisation moléculaire et cellulaire du rôle de la poly(ADP-ribose) polymérase 3 (PARP3) dans la maintenance de l'intégrité du génome / Molecular and cellular characterization of the role of the poly(ADP-ribose) polymerase 3 (PARP3) in the maintenance of genome integrity

Beck, Carole 12 October 2016 (has links)
La poly(ADP-ribosyl)ation est une modification post-traductionnelle des protéines par les poly(ADP-ribose) polymérases (PARPs). PARP3 a été identifiée comme un nouvel acteur de la réparation des cassures double-brin (DSBs). Nous avons évalué la contribution de PARP3 dans les différentes voies de réparation (HR, C-NHEJ ou A-EJ). Les résultats obtenus définissent PARP3 comme un modulateur de l’étape de résection d’ADN simple-brin permettant d’engager le choix de la voie de réparation. Nous avons montré que PARP3 favorise le recrutement du complexe Ku70/Ku80 aux sites de cassures et module la balance BRCA1/53BP1. Ces deux événements limitent l’étape de réparation de la voie HR et A-EJ et oriente la réparation vers la voie du C-NHEJ. Par immunoprécipitation de la chromatine, nous avons étudié les conséquences de l’absence de PARP3 sur les modifications d’histones, connues pour moduler la décision entre les différentes voies de réparation. Nos résultats actuels ne nous ont pas permis d’établir de lien entre PARP3 et les modifications d’histones en réponse aux DSBs. Nous avons toutefois observé qu’en absence de dommages, l’absence de PARP3 induit un enrichissement de H3K36me2 une marque d’histone connue pour réguler les gènes transcriptionnellement actifs. Dans un second projet, nous avons étudié l’impact de l’absence de PARP3 sur la viabilité cellulaire et la progression tumorale de cellules cancéreuses mutées en BRCA1. Nous avons montré par des approches in vitro et in vivo que l’absence de PARP3 induit une diminution de la survie et de la prolifération cellulaire plus marquée, une amplification exacerbée des centrosomes, ainsi qu’un ralentissement plus important de la progression tumorale, faisant de PARP3 une cible prometteuse en thérapie du cancer. / Poly(ADP-ribosyl)ation is a post-translational modification of proteins catalyzed by poly(ADPribose) polymerases (PARPs). PARP3 was identified as a novel actor of the double-strand break (DSBs) repair pathway. We evaluated the contribution of PARP3 in these repair pathways(HR, C-NHEJ ou A-EJ). Our results defined PARP3 as a modulator of the single strand DNA resection process which plays a role in driving the repair pathway choice. We showed that PARP3 enhances the recruitement of the Ku70/Ku80 complexe to damaged sites and modulates the BRCA1/53BP1 balance. These two events prevent the DNA end resection step initiating HR and A-EJ and drives the repair towards the C-NHEJ. By chromatin immunoprecipitation, we studied the consequences of the absence of PARP3 on histone modifications, known to modulate the decision of the DSBs repair pathways. Our current results didn’t allow us to establish a link between PARP3 and histone modifications in response to DSBs. However, in absence of DNA damage and PARP3, we observed an accumulation of H3K36me2, a histone mark known to regulate transcriptionally active genes. In a second project, we studied the impact of the absence of PARP3 on cell viability and tumor progression in breast cancer cell lines mutated in BRCA1. By in vitro and in vivo approaches, we showed that the absence of PARP3 induces an important decrease in cell survival and proliferation, an increase in centrosomal amplification and a strong delay in tumor progression. The roles of PARP3 in both cellular response to DNA damage and mitotic progression introduce PARP3 as a possible promising therapeutic target in cancer therapy.
20

Functional interactions of chromosome segregation factors with the 2 micron plasmid : possible evolutionary link between the plasmid portioning locus and the budding yeast centromere

Huang, Chu-Chun 01 June 2011 (has links)
The 2 micron plasmid of Saccharomyces cerevisiae is a multi-copy circular DNA genome that resides in the nucleus and exhibits nearly chromosome-like stability in host populations. Several host factors are required for equal plasmid segregation during cell division. One of them is cohesin (a multi-subunit protein complex) which mediates sister chromatid cohesion, a crucial mechanism for faithful segregation of replicated chromosomes in eukaryotes. The 2 micron plasmid mimics chromosomes in assembling cohesin at its partitioning locus. Studies on minichromosomes (centromere containing plasmids) reveal that cohesin forms a ring that embraces replicated sister centromeres topologically rather than physically. The functional similarities between chromosome and plasmid segregation prompted us to examine whether the topological mechanism proposed for centromere-mediated replicative cohesion is also true in the case of the plasmid. In the present study, we have characterized the nature and stoichiometry of cohesin's association with the 2 micron plasmid. Another host factor required for equal plasmid segregation is the CenH3 histone variant Cse4, so far considered to be uniquely associated with centromeric nucleosomes. Cse4 provides an epigenetic landmark at centromeres, and is required for assembly of the kinetochore complex. Surprisingly, Cse4 also interacts with the 2 micron plasmid partitioning locus. We have now functionally characterized this interaction, which can be preserved even in an ectopic, chromosomal context. The steady state level of Cse4 is highly limiting in yeast due to ubiquitin-mediated proteolysis. Only centromere-associated Cse4 is protected from this regulatory turnover control. We find that, in contrast to the situation with centromeres, association of Cse4 with the 2 micron plasmid is highly sub-stoichiometric but still promotes equal plasmid segregation. We also find that Cse4 induces an unusual right handed DNA writhe at the plasmid partitioning locus, as it does at the centromere. Our findings suggest that the plasmid has designed strategies to minimize the utilization of host factors that are in short supply. They signify the advantage of clustering and group behavior in the evolutionary success of a multi-copy selfish genome. Finally, they also suggest the possible emergence of the yeast centromere and the plasmid partitioning locus from a common ancestral sequence. / text

Page generated in 0.0678 seconds