• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation du système microtubulaire par analyse top-down et protéomique d'affinité / Microtibular system characterization by top-down analysis and affinity proteomics

Calligaris, David 26 May 2011 (has links)
Le cytosquelette microtubulaire est une des cibles majeures en thérapie anticancéreuse. La caractérisation des isoformes d'une protéine est une problématique complexe en analyse protéomique. Pourtant il est crucial de mettre en évidence les variations de séquence primaire et les modifications post-traductionnelles qui peuvent dans certains cas être corrélées avec un phénomène physiologique et dans d'autres avec un état pathologique. Ainsi, la surexpression de l'isotype βIII de la tubuline, protéine constitutive des microtubules, peut avoir des conséquences importantes sur la régulation des propriétés dynamiques des microtubules et donc sur la réponse des tumeurs aux agents anticancéreux. Chaque isotype de tubuline se distingue principalement par les derniers acides aminés composant leur extrémité C-terminale. L'analyse top-down par MALDI-ISD est une approche de choix pour la caractérisation des isotypes de tubuline dont βIII. De plus, les propriétés spécifiques de fragmentation de cette protéine rendent possible son étude in situ sur coupes de tissue. Le choix de la matrice ainsi qu'une connaissance de la séquence primaire des protéines sont des paramètres importants lors des analyses MALDI-ISD. Une protéine telle qu'EB1, présentant une forte homologie de séquence C-terminale avec l'isotype α1B de la tubuline, est un candidat intéressant pour ce type d'approche. Cette protéine associée aux microtubules est le centre d'un réseau protéique régulant la dynamique des microtubules tel que dans le cas de l'angiogenèse tumorale. L'interaction entre EB1 et les protéines à domaine CAP-Gly se réalise par l'intermédiaire de son motif C-terminal -EEY où la tyrosine semble en être l'élément régulateur. La mise au point d'une approche de protéomique d'affinité pour l'identification et la quantification par spectrométrie de masse des complexe interagissant avec EB1 semble donc être un prérequis pour l'élaboration de nouveaux composés inhibant ce type d'interaction dans des contextes biologiques précis. / Microtubule is one of the major targets in cancer therapy. Protein isoforms characterization is a complex issue in proteomic analysis. Yet is is crucial to highlight primary sequence variations and posttranslational modifications that are associated with physiological processes or pathologies. Thus overexpression of βIII-tubulin isotype, protein that make up microtubules, can have consequences on the regulation of microtubules dynamic properties and therefore tumors response to anticancer agents. Each tubulin isotype is distinguished by the last amino acids of their C-terminus. MALDI-ISD top-down analysis is of interest for tubulin isotypes characterization as βIII. In addition, specific fragmentation properties of this protein make possible its in situ study on tissue sections. Matrix choice and knowledge of proteins primary sequence are important parameters for MALDI-ISD experiments. As protein such as EB1, that presents high sequence homology with α1B-tubulin isotype C-terminus, is an interesting candidate for this kind of approach. This microtubule associated protein is the core of a protein netword that regulates microtubule dynamics such as in the cas of tumor angiogenesis. The interaction between EB1 and proteins with CAP-Gly domain is realized through its C-terminal motif -EEY and tyrosine seems to be the regulatory element. The development of an approach by proteomics affinity for the identification and the quantification by mass spectrometry of complex interacting with EB1 appears to be a prerequisite for the development of new compounds that inhibit this peculiar mode of protein-protein interaction in specific biological contexts.
2

Etude de l'implication de CRMP4, un partenaire de MAP6, dans la voie de signalisation sémaphorine 3E / Study of the function of CRMP4, a MAP6 partner, in semaphorin 3E signaling pathway

Boulan, Benoit 26 January 2018 (has links)
Etude de l'implication de CRMP4, un partenaire de MAP6, dans la voie de signalisation sémaphorine 3E.Pendant le développement embryonnaire, les neurones établissent des milliards de connexions. Ces connexions ne sont pas aléatoires, mais précisément orientées, dirigées par des molécules de guidage situées dans l’environnement cellulaire. Le branchement inapproprié de ces neurones a de graves conséquences sur les fonctions sensorielles, motrices et cognitives du système nerveux, aboutissant à des pathologies neurologiques et psychiatriques telle que la schizophrénie. Ainsi la mutation de certaines protéines impliquées dans le guidage de ces connexions, comme MAP6 ou CRMP4, peut entraîner des perturbations conduisant à des prédispositions pour le développement de telles pathologies. En effet l'absence de MAP6 (souris KO MAP6) conduit à l'altération de nombreuse connections neuronales associé a différents troubles comportementaux réminiscent avec des symptômes schizoïdes. Parmi les faisceaux d'axones affectés on remarque la disparition du fornix, un faisceau neuronal connu pour son implication dans la schizophrénie. Cette disparition est en partie causée, en l'absence de MAP6, par l'abolition de la signalisation induite par la molécule de guidage sémaphorine 3E (Sema3E). Dans ce projet de thèse, le lien entre MAP6 et CRMP4 dans cette voie de signalisation Sema3E à pu être établi. De plus, l'impact de l'absence de la protéine CRMP4 sur la formation du fornix a pu être caractérisé par l'étude neuroanatomique des souris KO CRMP4. Nous avons par ailleurs pu mettre en évidence de nouvelles altérations causée par l'absence de MAP6. Dans son ensemble ce travail approfondit les connaissances des défauts des connectivités des souris KO MAP6 et identifie CRMP4 comme un nouvel acteur de la signalisation Sema3E et de la formation du fornix. / Study of the involvement of the MAP6 partners, CRMP4, in the semaphorin 3E signaling pathway.During embryonic development, neurons establish billion of connections between them. Those connections are not random. On the contrary, they are precisely targeted thanks to the driving by cellular environment guidance cues. A wrong branching of those neurons can lead to dramatic impairment of sensory, motor and cognitive function of the central nervous system resulting in neurologic or psychiatric disorders such as Schizophrenia. Thus, mutation of proteins implicated on neurons guidance like MAP6 or CRMP4 can lead to susceptibility for those kind of pathology occurrence. In fact, MAP6 deletion ( MAP6 KO mice) leads to diverse neuronal connectivity alterations associated to schizophrenia-like behavior disorders. Among axonal tracts affected we notice the absence of the fornix known for its implication on Schizophrenia. In MAP6 KO mice, this fornix disruption is partly due to the loss of semaphorin 3E (Sema3E) dependant signaling pathway. This project shows the involvement of CRMP4, a partner of MAP6, in the Sema3E signaling pathway. Furthermore, it characterized the impact of the CRMP4 deletion (CRMP4 KO) on fornix formation. Finally, neuroanatomical studies allowed us to identify unknown alteration of MAP6 KO mice connectivity alteration.
3

Régulation de la stabilité du cytosquelette microtubulaire : conséquences sur la croissance de la jonction neuromusculaire chez la Drosophile

Franco, Bénédicte 18 December 2007 (has links) (PDF)
Lors du développement du système nerveux, de nombreux mécanismes moléculaires sont mis en jeu afin que les axones trouvent leur cible et établissent des synapses. Une fois ces synapses établies, elles restent plastiques et peuvent encore être modifiées d'un point de vue morphologique et fonctionnel en fonction de la taille de la cible ou de l'activité de la synapse. La jonction neuromusculaire (JNM) de la larve de drosophile est un modèle idéal pour étudier cette plasticité synaptique développementale. En effet, la cellule musculaire innervée augmente de taille d'un facteur 50, et la JNM croît en conséquence. Cette croissance met en jeu le cystoquelette microtubulaire, composant central de la terminaison synaptique. Dans cette thèse, nous avons étudié le rôle de la protéine kinase Shaggy dans la croissance de la JNM et avons montré qu'elle joue un rôle inhibiteur dépendant de la protéine associée aux microtubules (MAP) Futsch. Futsch est le représentant d'une des deux familles de MAPs structurales. Ces deux familles comprennent la famille MAP1 (MAP1A, MAP1B et MAP1S) et la famille MAP2/MAP4/Tau. Dans le système nerveux, elles stabilisent les microtubules et favorisent la pousse neuritique. Cependant, lors de synaptogenèse, leur rôle est méconnu. Chez la drosophile, il n'existe qu'un membre de chaque famille : Futsch (MAP1) et Tau (MAP2/MAP4/Tau), ce qui simplifie l'étude d'une famille par rapport à l'autre par l'absence de redondance. Nous avons ensuite étudié le rôle de ces MAPs sur la stabilité des microtubules, ce qu'il en résulte concernant la croissance de la JNM et quels acteurs, notamment ceux de la voie de signalisation Wnt/Wingless, peuvent réguler ces protéines.
4

Caractérisation du rôle d'Ensconsine / MAP7 dans la dynamique des microtubules et des centrosomes / A new role for Ensconsin / MAP7 in microtubule and centrosome dynamics

Gallaud, Emmanuel 23 April 2014 (has links)
La mitose est une étape essentielle du cycle cellulaire à l’issue de laquelle le génome répliqué de la cellule mère est ségrégé de façon équitable entre les deux cellules filles. Pour cela, la cellule assemble une structure hautement dynamique et composée de microtubules, appelée le fuseau mitotique. En plus d’assurer la bonne ségrégation des chromosomes, le fuseau mitotique détermine l’axe de division, un phénomène particulièrement important pour la division asymétrique où des déterminants d’identité cellulaire doivent être distribués de façon inéquitable entre les deux cellules filles. L’assemblage et la dynamique de ce fuseau sont finement régulés par de nombreuses protéines qui sont associées aux microtubules. Au cour de ma thèse, nous avons identifié 855 protéines constituant l’interactome des microtubules de l’embryon de Drosophile par spectrométrie de masse puis criblé par ARNi 96 gènes peu caractérisés pour un rôle en mitose dans le système nerveux central larvaire. Par cette approche, nous avons identifié 18 candidats sur la base de leur interaction aux microtubules et de leur phénotype mitotique, dont Ensconsine/MAP7. Nous avons montré qu’Ensconsine est capable de s’associer aux microtubules du fuseau et favorise leur polymérisation. De plus, les neuroblastes des larves mutantes présentent des fuseaux raccourcis et une durée de mitose prolongée. Ce délai en mitose est dû à une activation prolongée du point de contrôle du fuseau mitotique qui est essentiel pour une ségrégation correcte des chromosomes en l’absence d’Ensconsine. D’autres part, en association avec la Kinésine-1, son partenaire fonctionnel en interphase, nous avons montré qu’Ensconsine est également impliquée dans la séparation des centrosomes au cours de l’interphase. Ceci entraine une distribution aléatoire des centrosomes pères et fils dans cellules filles. Grâce à cette étude, nous avons révélé deux nouvelles fonctions pour Ensconsine : elle favorise la polymérisation des microtubules et participe donc à l’assemblage du fuseau mitotique et est impliquée, avec la Kinésine-1 dans la dynamique des centrosomes. / Mitosis is a key step of the cell cycle that allows the mother cell to segregate its replicated genome equally into the two daughter cells. To do so, the cell assembles a highly dynamic structure composed of microtubules called the mitotic spindle. Additionally to its role in the faithful segregation of chromosomes, the mitotic spindle defines the axis of cell division. This phenomenon is particularly important for the asymmetric cell division in which cell fate determinants have to be unequally distributed between the two daughter cells. Spindle assembly and dynamics are subtly regulated by numerous microtubules-associated proteins. During my PhD, we identified using mass spectrometry, 855 proteins establishing the Drosophila embryo microtubule interactome. An RNAi screen was performed in the larval central nervous system for 96 poorly described genes, in order to identify new mitotic regulators. Based on microtubule interaction and mitotic phenotype, among 18 candidates we focused on Ensconsin/MAP7. We have shown that Ensconsin is associated with spindle microtubules and promotes their polymerization. Neuroblasts from mutant larvae display shorter spindles and a longer mitosis duration. This mitotic delay is a consequence of an extended activation of the spindle assembly checkpoint, which is essential for the proper chromosome segregation in the absence of Ensconsin. This study also showed that, in association with its interphase partner Kinesin-1, Ensconsin is involved in centrosome separation during interphase. As a result, mother and daughter centrosomes are randomly distributed between the daughter cells. In conclusion, we highlighted two news functions of Ensconsin : first, this protein promotes microtubule polymerization and is involved in spindle assembly ; second, Ensconsin and its partner Kinesin-1 regulate centrosome dynamics.
5

Etude in vitro des effets de la protéine MAP6 sur le cytosquelette / In vitro study of the MAP6 effects on the microtubules

Seggio, Maxime 29 June 2016 (has links)
Le cytosquelette d'une cellule eucaryote est constitué de trois types de polymères différents qui sont l'actine, les filaments intermédiaires et les microtubules. Ces éléments confèrent à la cellule l'essentiel de ses propriétés mécaniques telles que le maintien de l'architecture ou la modification de sa forme pour permettre le déplacement cellulaire. Ils sont également impliqués dans le transport d'organites ou de nutriments d'un bout à l'autre de la cellule, dans la ségrégation des chromosomes lors de la mitose ou encore dans le processus de division cellulaire. Pour répondre aux différents besoins de la cellule, ces filaments sont extrêmement dynamiques et peuvent se désassembler pour se réassembler à un autre endroit de la cellule. Cette dynamicité est régulée par de nombreuses protéines accessoires qui vont être capables de modifier les propriétés intrinsèques des différents filaments (dynamique, mécanique et organisatrice). Parmi ces protéines régulatrices, l'on distingue tout particulièrement les MAPs, pour Microtubule Associated Proteins, capables de modifier la dynamique et la structure des microtubules. MAP6, ou encore STOP pour Stable Tubule Only Peptide, est une MAP neuronale qui fut initialement décrite pour sa capacité à protéger les microtubules d'une exposition au froid ou encore de drogues dépolymérisantes comme le nocodazole. Des souris délétées pour le gène MAP6 montrent des troubles cognitifs et comportementaux proches des patients atteints de schizophrénie, impliquant au moins en partie des défauts de stabilisation des microtubules. Cependant, les effets de la protéine sur les microtubules restaient encore à déterminer. Dans ce contexte, à l'aide de diverses approches biochimiques et vidéomicroscopiques, nous avons montré que la protéine MAP6 est capable d’interagir de façon directe avec les microtubules in vitro et permet leur stabilisation. Elle permet aussi de réguler la dynamique des microtubules en augmentant la vitesse de polymérisation de l'extrémité (+), de diminuer la fréquence de catastrophe et l'apparition d’événements de sauvetage, de façon similaire à d'autres MAPs comme Tau ou MAP2. Cependant, contrairement aux autres MAPs, nous avons montré que MAP6 présente une dualité d'action sur le bout (-) des microtubules en diminuant et figeant très rapidement la dynamique de cette extrémité. Cette dualité pourrait ainsi conférer à MAP6 un rôle essentiel de nucléateur de microtubules en figeant l'extrémité (-) du microtubule et en favorisant la polymérisation et la stabilisation de l'extrémité (+). De plus, la protéine MAP6 est capable de modifier fortement la structure des microtubules. De part leur composition et leur rôle, les microtubules sont les éléments les plus rigides du cytosquelette et forment naturellement un tube creux linéaire. Or en présence de MAP6, les microtubules perdent cet aspect linéaire et adoptent une structure hélicoïdale (avec un pas d'environ 4,5 μm et une hauteur d'environ 1 μm) qui n'avait encore jamais été observée jusqu'à présent. La présence d'une telle population de microtubules dans la cellule pourrait ainsi apporter une certaine résistance mécanique ou encore permettre le maintien de l'architecture de l'axone. Enfin, nous avons montré que MAP6 peut aussi interagir de façon directe avec les filaments d'actines et les associer entre eux pour former des faisceaux. Dans les neurones, de nombreuses molécules ont été identifiées comme étant des régulateurs clés dans le « crosstalk » entre les filaments d'actines et les microtubules. L'interaction et la coordination entre les différents éléments du cytosquelette jouent un rôle essentiel dans la transmission et le relais du message synaptique. MAP6 pourrait être importante pour l'ensemble de ces mécanismes ce qui expliquerait les défauts de plasticité synaptique ainsi que les défauts cognitifs observés chez les souris KO MAP6. / The eukaryotic cell's cytoskeleton is constitued by three types of different polymers which are the actin filaments, the intermediate filaments and the microtubules. These elements confer on the cell the main part of its mechanical properties such as the architecture preservation or the modification of its shape to allow the cellular movement. They are also involved in the organelles or nutrients transport throughout the cell, in the chromosomes segregation during mitosis or still in the cellular division process. To answer the cell's various needs, these filaments are extremly dynamics and are able to dis-assemblate to re-assemblate in another place of the cell. Tis dynamic is regulated ny numerous proteins which are going to be capable of modifiying the intrinsic properties of the different filaments (dynamic, mechanic and structure). Among them are present the MAPs, for Microtubule-Associated Proteins, which will be able to influence the microtubule dynamics and structure. MAP6, also known as STOP for Stable Tubule Only Peptide, is a neuronal MAP which was initially described for its capacity to protect microtubule from cold or nocodazole exposure. KO MAP6 mice display cognitive and behavioral disorders close to patient with schyzophrenia, involving at least partially microtubules stabilization defects. However, the effects of the protein on the microtubules still remained to determine. In this context, using diverse biochemical and cideomicroscopy technics, we showed that MAP6 is able to directly interact in vitro with the microtubules and stabilizes them. It also regulates the microtubule dynamics by increasing the microtubule growth rate of the plus end extremity, decreases the shrinkage frequency and allows rescue of shrinking microtubules, similarly to other MAPs like Tau or MAP2. However, contrary to the other MAPs, we showed that MAP6 has another effect on the microtubule (-) end by decreazing and freezing its dynamics. This dual effect could confer to MAP6 an essential role of microtubules nucleation by stabilizing the new formed microtubule (-) end and by stabilizing and increasing the (+) end microtubule growth rate. Furthermore, MAP6 is also able to strongly modify the microtubule structure. Microtubules are the stiffest elements of the cytoskeleton and naturally form due to their composition linear hollow tubes. Yet in presence of MAP6, microtubules lose their usual shape and adopt a helical structure (4,5 μm pitch and approximatly 1 μm thickness) which had never been observed until now. The presence of such a population of microtubules in the neuron could thus provide a mechanical strength and allow the preservation of the axon architecture. Finally, we showed that MAP6 can also directly interact with the actin filaments to associate them and form bundles. In neurons, several molecules have been identified as key regulators in the " crosstalk " between actin filaments and microtubules. The interaction and coordination between the different cytoskeletal elements play a vital role in the synaptic transmission. MAP6 may be important for all these mechanisms which would explain the synaptic plasticity and cognitive defects observed in KO MAP6 mice.
6

Etude de mécanismes moléculaires et de lois physiques qui régissent l'auto-organisation des microtubules en réseaux ordonnés et complexes in vitro

Portran, Didier 05 December 2012 (has links) (PDF)
Le cytosquelette de microtubule (MT) est essentiel dans de nombreux processus cellulaire. Il est notamment impliqué dans le trafic intracellulaire, la division cellulaire, la modification et le maintien de la forme de la cellule. En fonction du type cellulaire ou de son état de différenciation, les réseaux de MTs vont adopter des architectures différentes. Ces organisations sont définies par des contraintes géométriques intracellulaires et l'activité moléculaire de nombreuses protéines associées aux MTs (MAPs). Parmi ces protéines, des membres de la famille des MAP65s ont été identifiés. In vitro, elles forment des ponts entre les MTs pour les organiser en faisceaux. Le but de mon travail de thèse a été d'étudier in vitro le rôle de MAP65s dans l'auto-organisation d'un réseau de faisceaux de MTs. Dans un premier temps, j'ai mis au point un système biomimétique utilisant la technique de " micro-patterning " qui imposent une géométrie d'assemblage pour les MTs dans des limites qui se rapprochent de celles observées dans les cellules. Cette méthode permet de contrôler précisément l'assemblage des MTs à partir de zones dont les formes, la taille et la distribution des unes par rapport aux autres sont définies. Pour valider cette technique, j'ai reconstitué des réseaux qui miment des architectures cellulaires (i.e modules du fuseau mitotique). Dans un deuxième temps j'ai étudié le rôle de MAP65s dans l'auto-organisation de réseaux de faisceaux de MTs, et plus particulièrement l'étape de co-alignement entre MTs dynamiques et dispersés. J'ai montré que MAP65-1 de plante et son orthologue chez la levure, Ase1, diminuent fortement la longueur de persistance de MTs isolés ou organisés en faisceaux. Cet assouplissement leur permet de se déformer et donc de se co-aligner pour former des faisceaux lorsqu'ils se rencontrent à des angles de rencontre élevés. L'augmentation de flexibilité est du à l'interaction du domaine de liaison de MAP65-1/Ase1 avec la lattice des MTs. Ces résultats suggèrent que la diminution de la rigidité des MTs contrôle dans les cellules l'issue des évènements des rencontres entre MTs. De façon plus générale, la modulation des propriétés mécaniques des MTs par des MAPs représente un nouveau mécanisme pour réguler la plasticité des réseaux de MTs dans les cellules eucaryotes.
7

Etude de mécanismes moléculaires et de lois physiques qui régissent l'auto-organisation des microtubules en réseaux ordonnés et complexes in vitro / Dynamic assembly of microtubules and molecular mecanisms involved in the microtubule network during cellular morphogenesis

Portran, Didier 05 December 2012 (has links)
Le cytosquelette de microtubule (MT) est essentiel dans de nombreux processus cellulaire. Il est notamment impliqué dans le trafic intracellulaire, la division cellulaire, la modification et le maintien de la forme de la cellule. En fonction du type cellulaire ou de son état de différenciation, les réseaux de MTs vont adopter des architectures différentes. Ces organisations sont définies par des contraintes géométriques intracellulaires et l'activité moléculaire de nombreuses protéines associées aux MTs (MAPs). Parmi ces protéines, des membres de la famille des MAP65s ont été identifiés. In vitro, elles forment des ponts entre les MTs pour les organiser en faisceaux. Le but de mon travail de thèse a été d'étudier in vitro le rôle de MAP65s dans l'auto-organisation d'un réseau de faisceaux de MTs. Dans un premier temps, j'ai mis au point un système biomimétique utilisant la technique de « micro-patterning » qui imposent une géométrie d'assemblage pour les MTs dans des limites qui se rapprochent de celles observées dans les cellules. Cette méthode permet de contrôler précisément l'assemblage des MTs à partir de zones dont les formes, la taille et la distribution des unes par rapport aux autres sont définies. Pour valider cette technique, j'ai reconstitué des réseaux qui miment des architectures cellulaires (i.e modules du fuseau mitotique). Dans un deuxième temps j'ai étudié le rôle de MAP65s dans l'auto-organisation de réseaux de faisceaux de MTs, et plus particulièrement l'étape de co-alignement entre MTs dynamiques et dispersés. J'ai montré que MAP65-1 de plante et son orthologue chez la levure, Ase1, diminuent fortement la longueur de persistance de MTs isolés ou organisés en faisceaux. Cet assouplissement leur permet de se déformer et donc de se co-aligner pour former des faisceaux lorsqu'ils se rencontrent à des angles de rencontre élevés. L'augmentation de flexibilité est du à l'interaction du domaine de liaison de MAP65-1/Ase1 avec la lattice des MTs. Ces résultats suggèrent que la diminution de la rigidité des MTs contrôle dans les cellules l'issue des évènements des rencontres entre MTs. De façon plus générale, la modulation des propriétés mécaniques des MTs par des MAPs représente un nouveau mécanisme pour réguler la plasticité des réseaux de MTs dans les cellules eucaryotes. / The microtubule (MT) cytoskeleton is essential for many cell processes, such as the intracellular trafficking, the cell division, and the cell morphogenesis. Depending on the cell type or on its differentiation state, the MT networks will adopt different architectures. These organizations are defined by intracellular geometric constraints and the regulation of the acticity of many MT associated proteins (MAPs). Among these proteins, we get a particular interest in MAP65s family that crosslink MTs to organize them into bundles. The aim of my thesis was to study in vitro the role of MAP65s in the self-organization of MT bundles in particular networks. As a first step, I developed a biomimetic system using the micro-patterning procedure which imposes a MT assembly geometry within limits close to those observed in cells. This method allows to precisely control the MT assembly from micro-patterns with define shape, size and spatial distribution. In order to validate this technic, I reconstituted MT networks which mimic cellular architecture (i.e mitotic spindle modules). In a second time, I studied the role of major MT cross-linkers that are members of the MAP65 family in the formation of MT bundles, particularly the step of MT co-aligment after encountering of dynamic growing MTs. I found that plant MAP65-1 and its yeast ortholog, Ase1, lower the global rigidity of single MTs and MT bundles. This increase in MT flexibility is directly caused by interactions between the MAP65 MT-binding domain and the MT lattice. These data suggest that MT softening by MAP65 controls the issue of MT encounters, so that self-organized ordered MT bundles are formed in living cells. In a more general way, the modulation of MT mechanical propreties by MAPs represent a new mecanism to regulate MT networks plasticity in eukaryote cells.

Page generated in 0.0934 seconds