Spelling suggestions: "subject:"microtubules associated proteins"" "subject:"μicrotubules associated proteins""
1 |
Etude in vitro des effets de la protéine MAP6 sur le cytosquelette / In vitro study of the MAP6 effects on the microtubulesSeggio, Maxime 29 June 2016 (has links)
Le cytosquelette d'une cellule eucaryote est constitué de trois types de polymères différents qui sont l'actine, les filaments intermédiaires et les microtubules. Ces éléments confèrent à la cellule l'essentiel de ses propriétés mécaniques telles que le maintien de l'architecture ou la modification de sa forme pour permettre le déplacement cellulaire. Ils sont également impliqués dans le transport d'organites ou de nutriments d'un bout à l'autre de la cellule, dans la ségrégation des chromosomes lors de la mitose ou encore dans le processus de division cellulaire. Pour répondre aux différents besoins de la cellule, ces filaments sont extrêmement dynamiques et peuvent se désassembler pour se réassembler à un autre endroit de la cellule. Cette dynamicité est régulée par de nombreuses protéines accessoires qui vont être capables de modifier les propriétés intrinsèques des différents filaments (dynamique, mécanique et organisatrice). Parmi ces protéines régulatrices, l'on distingue tout particulièrement les MAPs, pour Microtubule Associated Proteins, capables de modifier la dynamique et la structure des microtubules. MAP6, ou encore STOP pour Stable Tubule Only Peptide, est une MAP neuronale qui fut initialement décrite pour sa capacité à protéger les microtubules d'une exposition au froid ou encore de drogues dépolymérisantes comme le nocodazole. Des souris délétées pour le gène MAP6 montrent des troubles cognitifs et comportementaux proches des patients atteints de schizophrénie, impliquant au moins en partie des défauts de stabilisation des microtubules. Cependant, les effets de la protéine sur les microtubules restaient encore à déterminer. Dans ce contexte, à l'aide de diverses approches biochimiques et vidéomicroscopiques, nous avons montré que la protéine MAP6 est capable d’interagir de façon directe avec les microtubules in vitro et permet leur stabilisation. Elle permet aussi de réguler la dynamique des microtubules en augmentant la vitesse de polymérisation de l'extrémité (+), de diminuer la fréquence de catastrophe et l'apparition d’événements de sauvetage, de façon similaire à d'autres MAPs comme Tau ou MAP2. Cependant, contrairement aux autres MAPs, nous avons montré que MAP6 présente une dualité d'action sur le bout (-) des microtubules en diminuant et figeant très rapidement la dynamique de cette extrémité. Cette dualité pourrait ainsi conférer à MAP6 un rôle essentiel de nucléateur de microtubules en figeant l'extrémité (-) du microtubule et en favorisant la polymérisation et la stabilisation de l'extrémité (+). De plus, la protéine MAP6 est capable de modifier fortement la structure des microtubules. De part leur composition et leur rôle, les microtubules sont les éléments les plus rigides du cytosquelette et forment naturellement un tube creux linéaire. Or en présence de MAP6, les microtubules perdent cet aspect linéaire et adoptent une structure hélicoïdale (avec un pas d'environ 4,5 μm et une hauteur d'environ 1 μm) qui n'avait encore jamais été observée jusqu'à présent. La présence d'une telle population de microtubules dans la cellule pourrait ainsi apporter une certaine résistance mécanique ou encore permettre le maintien de l'architecture de l'axone. Enfin, nous avons montré que MAP6 peut aussi interagir de façon directe avec les filaments d'actines et les associer entre eux pour former des faisceaux. Dans les neurones, de nombreuses molécules ont été identifiées comme étant des régulateurs clés dans le « crosstalk » entre les filaments d'actines et les microtubules. L'interaction et la coordination entre les différents éléments du cytosquelette jouent un rôle essentiel dans la transmission et le relais du message synaptique. MAP6 pourrait être importante pour l'ensemble de ces mécanismes ce qui expliquerait les défauts de plasticité synaptique ainsi que les défauts cognitifs observés chez les souris KO MAP6. / The eukaryotic cell's cytoskeleton is constitued by three types of different polymers which are the actin filaments, the intermediate filaments and the microtubules. These elements confer on the cell the main part of its mechanical properties such as the architecture preservation or the modification of its shape to allow the cellular movement. They are also involved in the organelles or nutrients transport throughout the cell, in the chromosomes segregation during mitosis or still in the cellular division process. To answer the cell's various needs, these filaments are extremly dynamics and are able to dis-assemblate to re-assemblate in another place of the cell. Tis dynamic is regulated ny numerous proteins which are going to be capable of modifiying the intrinsic properties of the different filaments (dynamic, mechanic and structure). Among them are present the MAPs, for Microtubule-Associated Proteins, which will be able to influence the microtubule dynamics and structure. MAP6, also known as STOP for Stable Tubule Only Peptide, is a neuronal MAP which was initially described for its capacity to protect microtubule from cold or nocodazole exposure. KO MAP6 mice display cognitive and behavioral disorders close to patient with schyzophrenia, involving at least partially microtubules stabilization defects. However, the effects of the protein on the microtubules still remained to determine. In this context, using diverse biochemical and cideomicroscopy technics, we showed that MAP6 is able to directly interact in vitro with the microtubules and stabilizes them. It also regulates the microtubule dynamics by increasing the microtubule growth rate of the plus end extremity, decreases the shrinkage frequency and allows rescue of shrinking microtubules, similarly to other MAPs like Tau or MAP2. However, contrary to the other MAPs, we showed that MAP6 has another effect on the microtubule (-) end by decreazing and freezing its dynamics. This dual effect could confer to MAP6 an essential role of microtubules nucleation by stabilizing the new formed microtubule (-) end and by stabilizing and increasing the (+) end microtubule growth rate. Furthermore, MAP6 is also able to strongly modify the microtubule structure. Microtubules are the stiffest elements of the cytoskeleton and naturally form due to their composition linear hollow tubes. Yet in presence of MAP6, microtubules lose their usual shape and adopt a helical structure (4,5 μm pitch and approximatly 1 μm thickness) which had never been observed until now. The presence of such a population of microtubules in the neuron could thus provide a mechanical strength and allow the preservation of the axon architecture. Finally, we showed that MAP6 can also directly interact with the actin filaments to associate them and form bundles. In neurons, several molecules have been identified as key regulators in the " crosstalk " between actin filaments and microtubules. The interaction and coordination between the different cytoskeletal elements play a vital role in the synaptic transmission. MAP6 may be important for all these mechanisms which would explain the synaptic plasticity and cognitive defects observed in KO MAP6 mice.
|
2 |
Rôle des protéines associées aux microtubules MAP1/Futsch dans l’organisation et le fonctionnement des synapses à la jonction neuromusculaire de drosophile / Role of MAP1/Futsch in synapse organization and functioning at the drosophila neuromuscular junctionLepicard, Simon 20 December 2013 (has links)
Les protéines associées aux microtubules (MAP) de structures, telles que celles appartenant à la famille des MAP1 sont connues pour contrôler la stabilité et la dynamique des microtubules (MTs). Elles sont aussi connues pour interagir avec des protéines post-synaptiques telles que les récepteurs GABAergique ou glutamatergique. Cependant, leur rôle pré-synaptique dans la libération de neurotransmetteurs a été très peu étudié. Dans cette thèse, j'utilise l'avantage du modèle Drosophila melanogaster dans lequel il n'y a qu'un seul homologue des MAP1 des vertébrés, nommé Futsch. J'ai étudié la fonction de Futsch à la jonction neuromusculaire (JNM) de larve, où cette protéine n'est trouvée que dans la partie pré-synaptique. Ici, j'ai montré qu'en plus de sa fonction connue sur la morphologie de la JNM (Roos et al., 2000; Gogel et al., 2006), Futsch est également important pour la physiologie de la JNM, par le contrôle de la libération de neurotransmetteurs ainsi que de la densité des zones actives (ZAs). J'ai montré que l'effet physiologique de Futsch n'est pas la conséquence de l'altération du cytosquelette de MTs ou d'un défaut de transport axonal, mais doit être la conséquence d'un effet local de Futsch à la terminaison synaptique. J'ai utilisé la microscopie d'éclairage structuré 3D (3D-SIM) pour étudier plus précisément la localisation de Futsch et des MTs au niveau de la ZA. Futsch et les MTs se trouvent presque toujours à proximité des ZAs, avec Futsch en position intermédiaire entre les MTs et les ZAs. En utilisant la technique de « proximity ligation assays », j'ai aussi démontré la proximité fonctionnelle de Futsch avec Bruchpilot un composant de la ZA, ce qui n'est pas le cas des MTs. En conclusion, mes données sont en faveur d'un modèle pour lequel Futsch stabilise localement les ZAs, en renforçant leur lien avec le cytosquelette de MTs sous-jacent. / Structural microtubule associated proteins like those belonging to the MAP1 family are known to control the stability and dynamics of microtubules (MTs). They are also known to interact with postsynaptic proteins like GABA or glutamate receptors. However, their presynaptic role in neurotransmitter release was barely studied. Here, we took advantage of the Drosophila model in which there is only one MAP1 homologue, called Futsch. We studied the function of Futsch at the larval neuromuscular junction (NMJ), where this protein is found presynaptically only. Here, we show that, in addition to its known function on NMJ morphology (Roos et al., 2000; Gogel et al., 2006), Futsch is also important for NMJ physiology, by controlling neurotransmitter release as well as active zone density. We show that this physiological effect of Futsch is not the consequence of disrupted microtubule bundle and disrupted axonal transport, but must be the consequence of a local effect of Futsch at the synaptic terminal. We used 3D-Structured Illumination Microscopy (3D-SIM) to further study the localization of Futsch and MTs with respect to active zones. Both Futsch and MTs are almost systematically present in close proximity active zones, with Futsch being localized in-between MTs and active zones. Using proximity ligation assays, we further demonstrated the functional proximity of Futsch, but not MTs, with the active zone component Bruchpilot. Altogether our data are in favor of a model by which Futsch locally stabilizes active zones, by reinforcing their link with the underlying MT cytoskeleton.
|
3 |
Etude de mécanismes moléculaires et de lois physiques qui régissent l'auto-organisation des microtubules en réseaux ordonnés et complexes in vitro / Dynamic assembly of microtubules and molecular mecanisms involved in the microtubule network during cellular morphogenesisPortran, Didier 05 December 2012 (has links)
Le cytosquelette de microtubule (MT) est essentiel dans de nombreux processus cellulaire. Il est notamment impliqué dans le trafic intracellulaire, la division cellulaire, la modification et le maintien de la forme de la cellule. En fonction du type cellulaire ou de son état de différenciation, les réseaux de MTs vont adopter des architectures différentes. Ces organisations sont définies par des contraintes géométriques intracellulaires et l'activité moléculaire de nombreuses protéines associées aux MTs (MAPs). Parmi ces protéines, des membres de la famille des MAP65s ont été identifiés. In vitro, elles forment des ponts entre les MTs pour les organiser en faisceaux. Le but de mon travail de thèse a été d'étudier in vitro le rôle de MAP65s dans l'auto-organisation d'un réseau de faisceaux de MTs. Dans un premier temps, j'ai mis au point un système biomimétique utilisant la technique de « micro-patterning » qui imposent une géométrie d'assemblage pour les MTs dans des limites qui se rapprochent de celles observées dans les cellules. Cette méthode permet de contrôler précisément l'assemblage des MTs à partir de zones dont les formes, la taille et la distribution des unes par rapport aux autres sont définies. Pour valider cette technique, j'ai reconstitué des réseaux qui miment des architectures cellulaires (i.e modules du fuseau mitotique). Dans un deuxième temps j'ai étudié le rôle de MAP65s dans l'auto-organisation de réseaux de faisceaux de MTs, et plus particulièrement l'étape de co-alignement entre MTs dynamiques et dispersés. J'ai montré que MAP65-1 de plante et son orthologue chez la levure, Ase1, diminuent fortement la longueur de persistance de MTs isolés ou organisés en faisceaux. Cet assouplissement leur permet de se déformer et donc de se co-aligner pour former des faisceaux lorsqu'ils se rencontrent à des angles de rencontre élevés. L'augmentation de flexibilité est du à l'interaction du domaine de liaison de MAP65-1/Ase1 avec la lattice des MTs. Ces résultats suggèrent que la diminution de la rigidité des MTs contrôle dans les cellules l'issue des évènements des rencontres entre MTs. De façon plus générale, la modulation des propriétés mécaniques des MTs par des MAPs représente un nouveau mécanisme pour réguler la plasticité des réseaux de MTs dans les cellules eucaryotes. / The microtubule (MT) cytoskeleton is essential for many cell processes, such as the intracellular trafficking, the cell division, and the cell morphogenesis. Depending on the cell type or on its differentiation state, the MT networks will adopt different architectures. These organizations are defined by intracellular geometric constraints and the regulation of the acticity of many MT associated proteins (MAPs). Among these proteins, we get a particular interest in MAP65s family that crosslink MTs to organize them into bundles. The aim of my thesis was to study in vitro the role of MAP65s in the self-organization of MT bundles in particular networks. As a first step, I developed a biomimetic system using the micro-patterning procedure which imposes a MT assembly geometry within limits close to those observed in cells. This method allows to precisely control the MT assembly from micro-patterns with define shape, size and spatial distribution. In order to validate this technic, I reconstituted MT networks which mimic cellular architecture (i.e mitotic spindle modules). In a second time, I studied the role of major MT cross-linkers that are members of the MAP65 family in the formation of MT bundles, particularly the step of MT co-aligment after encountering of dynamic growing MTs. I found that plant MAP65-1 and its yeast ortholog, Ase1, lower the global rigidity of single MTs and MT bundles. This increase in MT flexibility is directly caused by interactions between the MAP65 MT-binding domain and the MT lattice. These data suggest that MT softening by MAP65 controls the issue of MT encounters, so that self-organized ordered MT bundles are formed in living cells. In a more general way, the modulation of MT mechanical propreties by MAPs represent a new mecanism to regulate MT networks plasticity in eukaryote cells.
|
Page generated in 0.0782 seconds