• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 8
  • 8
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cetane Number of Biodiesel from Karaya Oil

Wasfi, Bayan 04 1900 (has links)
Biodiesel is a renewable fuel alternative to petroleum Diesel, biodiesel has similar characteristic but with lesser exhaust emission. In this study, transesterification of Karaya oil is examined experimentally using a batch reactor at 100-140°C and 5 bar in subcritical methanol conditions, residence time from 10 to 20 minutes, using a mass ratio 6 methanol-to-vegetable oil. Methanol is used for alcoholysis and sodium hydroxide as a catalyst. Experiments varied the temperature and pressure, observing the effect on the yield and reaction time. In addition, biodiesel from corn oil was created and compared to biodiesel from karaya oil. Kinetic model proposed. The model estimates the concentration of triglycerides, diglycerides, monoglycerides and methyl esters during the reaction. The experiments are carried out at temperatures of 100°C and above. The conversion rate and composition of methyl esters produced from vegetable oils are determined by Gas Chromatography Analysis. It was found that the higher the temperature, the higher reaction rate. Highest yield is 97% at T=140°C achieved in 13 minutes, whereas at T=100°C yield is 68% in the same time interval. Ignition Quality Test (IQT) was utilized for determination of the ignition delay time (IDT) inside a combustion chamber. From the IDT cetane number CN inferred. In case of corn oil biodiesel, the IDT = 3.5 mS, leading to a CN = 58. Whereas karaya oil biodiesel showed IDT = 2.4 mS, leading to a CN = 97. The produced methyl esters were also characterized by measurements of viscosity (υ), density (ρ), flash point (FP) and heat of combustion (HC). The following properties observed: For corn biodiesel, υ = 8.8 mPa-s, ρ = 0.863 g/cm3, FP = 168.8 °C, and HC = 38 MJ/kg. For karaya biodiesel, υ = 10 mPa-s, ρ = 0.877 g/cm3, FP = 158.2 °C, and HC = 39 MJ/kg.
2

Discribing the Auto-Ignition Quality of Fuels in HCCI Engines

Risberg, Per January 2006 (has links)
The Homogeneous Charge Compression Ignition (HCCI) engine is a promising engine concept that emits low concentrations of NOx and particulates and still has a high efficiency. Since the charge is auto-ignited, the auto-ignition quality of the fuel is of major importance. It has been shown in several studies that neither of the classical measures of auto-ignition quality of gasoline-like fuels, RON and MON, can alone describe this in all conditions in HCCI combustion. However, even in such cases it is possible to combine RON and MON into an octane index, OI, that describes the auto-ignition quality well in most conditions. The octane numbers are combined into the OI with the variable K according to the following equation: OI = (1-K)RON + K MON = RON – K S The OI of a sensitive fuel is the equivalent of the octane number of a primary reference fuel with the same resistance to auto-ignition in the tested condition. The K-value is dependent on the temperature and pressure history. A generic parameter Tcomp15, the temperature at 15 bar during the compression, was introduced to describe the temperature and pressure history. It was found that the K-value increases with increasing Tcomp15 and two linear equations have been suggested to describe this relationship. At high or low Tcomp15 it has been found that the sensitivity of the fuel octane quality on combustion phasing is small and the auto-ignition quality defined by the OI scale does no longer play a big role. NO affects the combustion phasing of gasoline-like fuels. This effect is most significant at low concentration where it advances the combustion phasing considerably. At higher conditions its influence is different for different fuels. A sensitive fuel is considered a good HCCI fuel since its OI changes in the same direction as the octane requirement of the engine, which would make the engine management easier. It is also likely that a sensitive fuel will enable a wider operating range. The auto-ignition quality of diesel-like fuels was studied in tests with three different strategies of mixture formation. In these tests it was found that the ignition delay increased with lower cetane number and that the cetane number described the auto-ignition quality well, even for fuels of significantly different physical properties. The experiments were, however, made at a limited range of operating conditions and low load. A good diesel-like HCCI fuel should be easy to vaporize to facilitate homogeneity. It should have a high resistance to auto-ignition, not necessarily the highest, one that allows both high and low loads at a given compression ratio. Finally, it should also function well with the injection system without a significant decrease in injection system life length. / QC 20100917
3

A functional group approach for predicting fuel properties

Abdul Jameel, Abdul Gani 03 1900 (has links)
Experimental measurement of fuel properties are expensive, require sophisticated instrumentation and are time consuming. Mathematical models and approaches for predicting fuel properties can help reduce time and costs. A new approach for characterizing petroleum fuels called the functional group approach was developed by disassembling the innumerable fuel molecules into a finite number of molecular fragments or ‘functional groups’. This thesis proposes and tests the following hypothesis, Can a fuels functional groups be used to predict its combustion properties? Analytical techniques like NMR spectroscopy that are ideally suited to identify and quantify the various functional groups present in the fuels was used. Branching index (BI), a new parameter that quantifies the degree and quality of branching in a molecule was defined. The proposed hypothesis was tested on three classes of fuels namely gasolines, diesel and heavy fuel oil. Five key functional groups namely paraffinic CH3, paraffinic CH2, paraffinic CH, naphthenic CH-CH2 and aromatic C-CH groups along with BI were used as matching targets to formulate simple surrogates of one or two molecules that reproduce the combustion characteristics. Using this approach, termed as the minimalist functional group (MFG) approach surrogates were formulated for a number of standard gasoline, diesel and jet fuels. The surrogates were experimentally validated using measurements from Ignition quality tester (IQT), Rapid compression machine (RCM) and smoke point (SP) apparatus. The functional group approach was also employed to predict research octane number (RON) and motor octane number (MON) of fuels blended with ethanol using artificial neural networks (ANN). A multiple linear regression (MLR) based model for predicting derived cetane number (DCN) of hydrocarbon fuels was also developed. The functional group approach was also extended to study heavy fuel oil (HFO), a viscous residual fuel that contains heteroatoms like S, N and O. It is used in ships as marine fuel and also in boilers for electricity generation. 1H NMR and 13C NMR measurements were made to analyze the average molecular parameters (AMP) of HFO molecules. The fuel was divided into 19 different functional groups and their concentrations were calculated from the AMP values. A surrogate molecule that represents the average structure of HFO was then formulated and its properties were predicted using QSPR approaches.
4

Selection of Prediction Methods for Thermophysical Properties for Process Modeling and Product Design of Biodiesel Manufacturing

Su, Yung-Chieh 14 July 2011 (has links)
To optimize biodiesel manufacturing, many reported studies have built simulation models to quantify the relationship between operating conditions and process performance. For mass and energy balance simulations, it is essential to know the four fundamental thermophysical properties of the feed oil: liquid density (Ï L), vapor pressure (Pvap), liquid heat capacity (CpL), and heat of vaporization (Î Hvap). Additionally, to characterize the fuel qualities, it is critical to develop quantitative correlations to predict three biodiesel properties, namely, viscosity, cetane number, and flash point. Also, to ensure the operability of biodiesel in cold weather, one needs to quantitatively predict three low-temperature flow properties: cloud point (CP), pour point (PP), and cold filter plugging point (CFPP). This article presents the results from a comprehensive evaluation of the methods for predicting these four essential feed oil properties and six key biodiesel fuel properties. We compare the predictions to reported experimental data and recommend the appropriate prediction methods for each property based on accuracy, consistency, and generality. Of particular significance are (1) our presentation of simple and accurate methods for predicting the six key fuel properties based on the number of carbon atoms and the number of double bonds or the composition of total unsaturated fatty acid methyl esters (FAMEs) and (2) our posting of the Excel spreadsheets for implementing all of the evaluated accurate prediction methods on our group website (www.design.che.vt.edu) for the reader to download without charge. / Master of Science
5

Development of ring-opening catalysts for diesel quality improvement

Nylén, Ulf January 2004 (has links)
<p>The global oil refining industry with its present shift inproduct distribution towards fuels such as gasoline and dieselwill most likely hold the fort for many years to come. However,times will change and survival will very much depend onprocessing flexibility and being at the frontiers of refiningtechnology, a technology where catalysts play leading roles.Today oil refiners are faced with the challenge to producefuels that meet increasingly tight environmentalspecifications, in particular with respect to maximum sulphurcontent. At the same time, the quality of crude oil is becomingworse with higher amounts of polyaromatics, heteroatoms(sulphur and nitrogen) and heavy metals. In order to staycompetitive, it is desirable to upgrade dense streams withinthe refinery to value-added products. For example, upgradingthe fluid catalytic cracking (FCC) by-product light cycle oil(LCO) into a high quality diesel blending component is a veryattractive route and might involve a two-step catalyticprocess. In the first step the LCO is hydrotreated andheteroatoms are removed and polyaromatics are saturated, in thesecond step naphthenic rings are selectively opened to improvethe cetane number of the final product.</p><p>The present research is devoted to the second catalytic stepof LCO upgrading and was carried out within the framework of aEuropean Union project entitled RESCATS.</p><p>From the patent literature it is evident that iridium-basedcatalysts seem to be good candidates for ring-opening purposes.A literature survey covering ring opening of naphthenicmolecules shows the need for extending investigations toheavier model substances, more representative of the dieselfraction than model compounds such as alkylated mono C5 and C6-naphthenic rings frequently employed in academic studies.</p><p>Ring-opening catalysts, mainly Pt-Ir based, were synthesisedat KTH by two different methods: the microemulsion and theincipient wetness methods. Characterization of the catalystswas performed using a number of techniques including TPR,TEM-EDX, AFM and XPS etc. Catalytic screening at atmosphericpressure using pure indan as model substance was utilized todetect ring-opening activity and the magnitude of selectivityto desired cetane-boosting products. The development of suchring-opening catalysts is the topic of Paper I.</p><p>When designing a catalytic system aimed at refiningpetroleum, it is crucial to monitor the evolution of thesulphur distribution throughout the different stages of theprocess so that catalyst properties and reaction parameters canbe optimised. The final section of this thesis and Paper II arethus devoted to high-resolution sulphur distribution analysisby means of a sulphur chemiluminescence detector (SCD).</p><p><b>Keywords:</b>ring opening, naphthenes, cetane numberimprovement, indan, light cycle oil (LCO), Pt-Ir catalyst,catalyst characterization, aromatic sulphur compounds, GC-SCD,distribution, analysis.</p>
6

Etude de l'influence des caractéristiques de carburants de synthèse sur la combustion diesel avancée homogène et partiellement homogène / Study of the impact of properties of synthetic fuels on diesel combustion

Ben Houidi, Moez 16 June 2014 (has links)
Dans un contexte de recherche de nouveaux modes de combustion propres, la combustionhomogène à allumage par compression HCCI s’inscrit comme une stratégie prometteuse.Cependant, cette combustion est limitée par un niveau élevé de bruit. La recherche descarburants permettant de relaxer cette contrainte constitue l’objectif global de cette étude.Particulièrement, on s’intéresse ici à l’influence de l’Indice de Cétane, de la volatilité et de lacomposition chimique des carburants sur les Délais d’Auto-Inflammation et sur les vitesses decombustion globales évaluées par les taux maximaux d’accroissement de la pression et dudégagement d’énergie apparente. L’étude se base dans un premier temps sur l’analyse d’essaissur banc moteur dans lesquels on a testé plusieurs carburants de synthèse à l’état pur et enmélange avec un Gazole conventionnel. Dans un deuxième temps des essais ont été préparés etréalisés sur Machine à Compression Rapide avec deux configurations en injection directe et enmélange homogène. Les essais Moteur ont permis d’orienter les paramètres expérimentauxciblés sur ce dispositif. D’autre part, pour étudier les régimes de combustion, des mesures dechamps de température locale ont été réalisées en mélange inerte (N2, CO2, Ar) par FluorescenceInduite par Laser avec un traceur Toluène. L’étude montre les limites des paramètres habituelspour caractériser l’adéquation carburant combustion HCCI et propose un nouveau critère basésur la dépendance des délais d’auto-inflammation à la température et à la richesse. / Advanced combustion strategies such as Homogeneous Charge Compression Ignition (HCCI)usually enable cleaner combustion with less NOx and Particulate Matter emissions comparedto conventional Diesel combustion. However, these strategies are difficult to implement due todifficulties related to combustion timing and burn rate control. Lately various studies have beenfocusing on extending advanced combustion functioning with new technologies and withsearching fuels properties to enable such combustion modes. This study is focused on theimpact of fuel Cetane Number, volatility and chemical composition on Ignition Delay, HeatRelease Rate and Pressure Rise Rate. The study is based on three complementary experiments.First, several synthetic fuel was tested on a research engine and analysis was focused on theHeat Release Rate. Secondly, experiments on a Rapid Compression Machine were performedto study the auto-ignition phenomena at homogeneous conditions with surrogate fuels (blendsof n-Heptane and Methyl-Cyclohexane). Analysis of the combustion regimes was supported bya study of the temperature field based on a Toluene Laser Induced Fluorescence experiment ininert (N2, CO2, Ar) mixture. Finally, the RCM was adapted to allow direct injection of fuel tostudy the auto-ignition at less homogeneous conditions. Results showed the limits of theconventional fuels properties to describe an adequate fuel formulation for the HCCI combustionmode. A new criterion based on the dependency of ignition delays to temperature and air fuelratio variations is proposed.
7

Development of ring-opening catalysts for diesel quality improvement

Nylén, Ulf January 2004 (has links)
The global oil refining industry with its present shift inproduct distribution towards fuels such as gasoline and dieselwill most likely hold the fort for many years to come. However,times will change and survival will very much depend onprocessing flexibility and being at the frontiers of refiningtechnology, a technology where catalysts play leading roles.Today oil refiners are faced with the challenge to producefuels that meet increasingly tight environmentalspecifications, in particular with respect to maximum sulphurcontent. At the same time, the quality of crude oil is becomingworse with higher amounts of polyaromatics, heteroatoms(sulphur and nitrogen) and heavy metals. In order to staycompetitive, it is desirable to upgrade dense streams withinthe refinery to value-added products. For example, upgradingthe fluid catalytic cracking (FCC) by-product light cycle oil(LCO) into a high quality diesel blending component is a veryattractive route and might involve a two-step catalyticprocess. In the first step the LCO is hydrotreated andheteroatoms are removed and polyaromatics are saturated, in thesecond step naphthenic rings are selectively opened to improvethe cetane number of the final product. The present research is devoted to the second catalytic stepof LCO upgrading and was carried out within the framework of aEuropean Union project entitled RESCATS. From the patent literature it is evident that iridium-basedcatalysts seem to be good candidates for ring-opening purposes.A literature survey covering ring opening of naphthenicmolecules shows the need for extending investigations toheavier model substances, more representative of the dieselfraction than model compounds such as alkylated mono C5 and C6-naphthenic rings frequently employed in academic studies. Ring-opening catalysts, mainly Pt-Ir based, were synthesisedat KTH by two different methods: the microemulsion and theincipient wetness methods. Characterization of the catalystswas performed using a number of techniques including TPR,TEM-EDX, AFM and XPS etc. Catalytic screening at atmosphericpressure using pure indan as model substance was utilized todetect ring-opening activity and the magnitude of selectivityto desired cetane-boosting products. The development of suchring-opening catalysts is the topic of Paper I. When designing a catalytic system aimed at refiningpetroleum, it is crucial to monitor the evolution of thesulphur distribution throughout the different stages of theprocess so that catalyst properties and reaction parameters canbe optimised. The final section of this thesis and Paper II arethus devoted to high-resolution sulphur distribution analysisby means of a sulphur chemiluminescence detector (SCD). Keywords:ring opening, naphthenes, cetane numberimprovement, indan, light cycle oil (LCO), Pt-Ir catalyst,catalyst characterization, aromatic sulphur compounds, GC-SCD,distribution, analysis.
8

ANALYTICAL AND EXPERIMENTAL INVESTIGATION OF MULTI-COMPONENT SURROGATE DIESEL FUELS

SZYMKOWICZ, PATRICK 03 November 2017 (has links)
Diesel fuel is composed of a complex mixture of hundreds of hydrocarbons that vary globally depending on crude oil sources, refining processes, legislative requirements and other factors. In order to simplify the study of this fuel, researchers create surrogate fuels with a much simpler composition, in an attempt to mimic and control the physical and chemical properties of Diesel fuel. The first surrogates were single-component fuels such as n-heptane and n-dodecane. Recent advancements have provided researchers the ability to develop multi-component surrogate fuels and apply them to both analytical and experimental studies. The systematic application of precisely controlled surrogate fuels promises to further enhance our understanding of Diesel combustion, efficiency, emissions and particulates and provide tools for investigating new and alternative engine combustion systems. This thesis employed analytical and experimental methods to develop, validate and study a library of multi-component surrogate Diesel fuels. The first step was to design a surrogate fuel to precisely match the physical and chemical properties of a full-range petroleum Diesel fuel with 50 cetane number and a typical threshold soot index value of 31. The next step was to create a Surrogate Fuel Library with 18 fuels that independently varied two key fuel properties: cetane number and threshold soot index. Within the fuel library cetane number ranged from 35 to 60 at three threshold soot index levels of 17, 31 and 48 (low, mid-range and high). Extensive ASTM fuel property tests showed that good agreement with important physical and chemical properties of petroleum Diesel fuel such as density, viscosity, heating value and distillation curve. An experimental investigation was conducted to evaluate the combustion, emissions, soot and exhaust particles from the petroleum Diesel fuel and the matching surrogate fuel. A fully-instrumented single-cylinder Diesel engine was operated with combustion strategies including Premixed Charge Compression Ignition (PCCI), Low-Temperature Combustion (LTC) and Conventional Diesel Combustion (CDC). For combustion, the ignition delay, low-temperature (first stage) and high temperature (second stage) heat-release matched very well. Gaseous emissions, soot and exhaust particles maintained good agreement as exhaust gas recirculation and combustion phasing were varied. This thesis demonstrated that fully representative Diesel surrogate fuels could be tailored with the proper blending of the following hydrocarbon components: n-hexadecane, 2,2,4,4,6,8,8-heptamethylnonane, decahydronaphthalene and 1-methylnaphthalene. It was also established that the volumetric blending fractions of these four components could be varied to independently control the fuel cetane number and threshold soot index while retaining the combustion, physical and chemical properties of full-range petroleum Diesel fuel. The Surrogate Fuel Library provided by this thesis supplies Diesel engine researchers and designers the ability to analytically and experimentally vary fuel cetane number and threshold soot index. This new capability to independently vary two key fuel properties provides a means to further enhance the understanding of Diesel combustion and design future combustion systems that improve efficiency and emissions. / El combustible diésel está compuesto por cientos de hidrocarburos cuya presencia y proporción varía dependiendo del origen del crudo, del proceso de refinado, de los requerimientos legislativos, y de muchos otros factores. Para evitar las dificultades que produce esta variabilidad y complejidad en su composición, en los estudios sistemáticos, los investigadores suelen trabajar con combustibles de sustitución, mucho más sencillos, pero que reproducen las propiedades químicas y físicas del gasóleo. Los primeros combustibles de sustitución estuvieron formados por un solo componente, como el n-heptano y el n-dodecano. Recientemente se han desarrollado combustibles de sustitución multi-componentes, que se aplican tanto a estudios experimentales como de modelado. La aplicación sistemática de combustibles de sustitución controlados con precisión es una vía prometedora para mejorar la comprensión de la combustión Diesel, su eficiencia, y sus emisiones y proporciona herramientas para la investigación de sistemas de combustión nuevos y alternativos. En esta tesis se han empleado métodos experimentales y de cálculo para desarrollar, estudiar y validar una librería de combustibles de sustitución multi-componentes. El primer combustible de sustitución se diseñó para reproducir con precisión las propiedades físicas y químicas de un gasóleo con número de cetano 50 y un índice de hollín umbral (TSI) de 31.El siguiente paso fue crear una biblioteca de combustibles de sustitución con 18 combustibles que pueden modificar independientemente dos propiedades clave del combustible: índice de cetano y TSI. En la biblioteca de combustibles el número de cetano osciló entre 35 y 60 con tres niveles de TSI iguales a 17, 31 y 48 (bajo, medio y alto rango). Los ensayos según la normativa ASTM demostraron una buena coincidencia con las propiedades del gasóleo como densidad, viscosidad, poder calorífico y curvas de destilación. Para comprobar la validez de la librería, se realizó un estudio experimental comparativo sobre el proceso de combustión, las emisiones gaseosas, hollín y partículas de un gasóleo y de su combustible de sustitución ajustado. El estudio se realizó con un motor monocilíndrico Diesel completamente instrumentado y operando con estrategias de combustión en premezcla parcial (PPCI) y de baja temperatura (LTC), además de la combustión Diesel convencional (CDC). Los parámetros de la combustión como el retraso al encendido y la liberación de calor tanto de baja como de alta temperatura se aproximaron muy bien. Las emisiones de gases, hollín y partículas también fueron similares al variar el nivel de EGR y la fase de la combustión. La tesis demuestra que se pueden encontrar combustibles de sustitución perfectamente representativos de un gasóleo corriente, en base a mezclas apropiadas de n-hexadecano, 2,2,4,4,6,8,8-heptamethylnonano, decahidronaftaleno y 1-metilnaftaleno. Asimismo, se concluye que variando la proporción de estos cuatro componentes se puede controlar independientemente el número de cetano y el índice de hollín umbral, a la vez que se mantienen las propiedades físico-químicas y de combustión del gasóleo. La librería de combustibles de sustitución definida en esta tesis es una herramienta a disposición de los investigadores para profundizar en el conocimiento de la combustión diésel y avanzar en el diseño de sistemas futuros de combustión con mejor rendimiento y menores emisiones. / El combustible Diesel està compost per centenars d'hidrocarburs, la presència i proporció dels quals varia depenent de l'origen del cru, del procés de refinat, dels requeriments legislatius, i de molts altres factors. Per a evitar les dificultats que produeix aquesta variabilitat i complexitat en la seua composició, en els estudis sistemàtics, els investigadors solen treballar amb combustibles de substitució, molt més senzills, però que reprodueixen les propietats químiques i físiques del gasoil. Els primers combustibles de substitució van estar formats per un sol component, com el n-heptà i el n-dodecà. Recentment s'han desenvolupat combustibles de substitució multi-components, que s'apliquen tant a estudis experimentals com de modelatge. L'aplicació sistemàtica de combustibles de substitució controlats amb precisió és una via prometedora per a millorar la comprensió de la combustió Dièsel, la seua eficiència, i les seues emissions i proporciona eines per a la recerca de sistemes de combustió nous i alternatius. En aquesta tesi s'han emprat mètodes experimentals i de càlcul per a desenvolupar, estudiar i validar una llibreria de combustibles de substitució multi-components. El primer combustible de substitució es va dissenyar per a reproduir amb precisió les propietats físiques i químiques d'un gasoil amb índex de cetà 50 i un índex de sutge límit (TSI) de 31. El següent pas va ser crear una biblioteca de combustibles de substitució amb 18 combustibles que poden modificar independentment dues propietats clau del combustible: índex de cetà i TSI. En la biblioteca de combustibles l'índex de cetá va oscil·lar entre 35 i 60 amb tres nivells de TSI iguals a 17, 31 i 48 (baix, mitjà i alt rang). Els assajos segons la normativa ASTM van demostrar una bona coincidència amb les propietats del gasoil com a densitat, viscositat, poder calorífic i corbes de destil·lació. Per a comprovar la validesa de la llibreria, es va realitzar un estudi experimental comparatiu sobre el procés de combustió, les emissions gasoses, sutge i partícules d'un gasoil i del seu combustible de substitució ajustat. L'estudi es va realitzar amb un motor monocilíndric Dièsel completament instrumentat i operant amb estratègies de combustió en premescla parcial (PPCI) i de baixa temperatura (LTC), a més de la combustió Dièsel convencional (CDC). Els paràmetres de la combustió com el retard a l'encès i l'alliberament de calor tant de baixa com d'alta temperatura es van aproximar molt bé. Les emissions de gasos, sutge i partícules també van ser similars en variar el nivell d'EGR i la fase de la combustió. La tesi demostra que es poden trobar combustibles de substitució perfectament representatius d'un gasoil corrent, sobre la base de mescles apropiades de n-hexadecà, 2,2,4,4,6,8,8-heptamethylnonà, decahidronaftalé i 1-metilnaftaleno. Així mateix, es conclou que variant la proporció d'aquests quatre components es pot controlar independentment l'índex de cetà i l'índex de sutge límit, alhora que es mantenen les propietats físic-químiques i de combustió del gasoil. La llibreria de combustibles de substitució definida en aquesta tesi és una eina a la disposició dels investigadors per a aprofundir en el coneixement de la combustió Diesel i avançar en el disseny de sistemes futurs de combustió amb millor rendiment i menors emissions. / Szymkowicz, P. (2017). ANALYTICAL AND EXPERIMENTAL INVESTIGATION OF MULTI-COMPONENT SURROGATE DIESEL FUELS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90406 / TESIS

Page generated in 0.0389 seconds