Spelling suggestions: "subject:"chalcogenides"" "subject:"chalcogenide""
121 |
Estudo da Reatividade de Fenilcalcogenolatos de Índio(III) / Study on the reactivity of Indium(III) BenzenechalcogenolatesCastro, Liérson Borges de 02 March 2011 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / Indium(III) benzenechalcogenolates (chalcogen = sulfur, selenium) prepared from elemental indium and diphenyl dichalcogenide provide an alternative synthetic route to produce carbon-chalcogen bonds. These compounds promote the regioselective hydrochalcogenation of terminal aminoalkynes to produce the Markovnikov adducts; provide a pratical method to prepare organyl phenyl chalcogenides from organyl halides; and their reaction with vinylarenes in aqueous media produces the respectives β-hydroxy selenides. Ditellurides present a different performance compared to others studied dichalcogenides. Indium(I) salts react with tellurium compounds and through extrusion of one tellurium atom produce diaryl tellurides.
This work presents new synthetic methodologies and discusses the general aspects and limitations of indium chalcogenolates in the different systems investigated. / Fenilcalcogenolatos de índio(III) (calcogênio = enxofre e selênio), preparados a partir de índio metálico e difenil dicalcogenetos, são uma alternativa em síntese para geração de ligações carbono-calcogênio. Estes compostos promovem a hidrocalcogenação Markovnikov de alquinilaminas terminais com rigorosa regiosseletividade; conduzem, de modo prático, ao preparo de organil fenilcalcogenetos frente a haletos orgânicos; e na reação com estirenos possibilitam a síntese de β-hidroxisselenetos em meio aquoso. Já os diteluretos empregados apresentam comportamento diferenciado em relação aos demais dicalcogenetos estudados. A reação de sais de índio(I) com os compostos de telúrio conduzem a extrusão de telúrio e a obtenção de diaril teluretos.
O trabalho desenvolvido, além de apresentar novas metodologias sintéticas, discute as generalidades e limitações dos calcogenolatos de índio nos diferentes sistemas investigados.
|
122 |
Hollow magnetic and semiconductor micro/nanostructures : synthesis, physical properties and applicationPomar, César Augusto Díaz January 2018 (has links)
Orientador: Prof. Dr. José Antonio Souza / Tese (doutorado) - Universidade Federal do ABC, Programa de Pós-Graduação em Nanociências e Materiais Avançados, Santo André, 2018. / O objetivo deste trabalho e sintetizar materiais magneticos e semicondutores ocos
micro/nanoestruturados hierarquicamente, para obter um melhor entendimento das
propriedades fisicas e explorar aplicacoes tecnologicas. Inicialmente, microtubos de hematita
e magnetita foram sintetizados por oxidacao termica juntamente com uma corrente eletrica
aplicada e utilizando-se o microfio de ferro metalico como precursor. A fraccao volumetrica
de Fe2O3(hematite) e Fe3O4(magnetite) nos microtubos e a formacao das nanoestruturas de
hematite na superficie pode ser controlada por alteracoes sistematicas dos parametros de
sintese tais como temperatura, rampa de aquecimento, tempo de aquecimento e valor da
corrente electrica. A reacao quimica de oxidacao envolve um processo onde uma fina camada
de oxido e formada primeiro na superficie do metal, seguida por difusao simultanea de ions
metalicos atraves da camada oxida e difusao de oxigenio da atmosfera para o interior. A
difusao para fora e mais rapida, levando a criacao de vacancias que coalescem em poros
formando os microtubos. Medidas de resistividade eletrica in situ foram realizadas durante o
processo de oxidacao mostrando todo o processo de formacao do microtubo. Imagens de
microscopia eletronica de varredura mostram a morfologia do microtubo com diametro
variando de 40 ¿Êm a 100 ¿Êm e comprimento de 5 mm. Medidas de difracao de raios-X em po
evidenciam a presenca de fases cristalinas de hematita (Fe2O3) e magnetita (Fe3O4) nos
microtubos. Nanoestruturas de hematita aparecem em forma de bastoes e fios dispersos
homogeneamente ao redor da superficie do microtubo com diametros de 80-300 nm e
comprimento de 1-5 ¿Êm. Experimentos in vitro envolvendo aderencia, migracao e
proliferacao de culturas de celulas de fibroblastos na superficie dos microtubos indicaram a
ausencia de citotoxicidade para este material. Tambem o calculo do torque e da forca
magnetica desses microtubos com nanofios em funcao do gradiente de campo magnetico
externo, mostrou que ele e robusto, abrindo a possibilidade para fabricacao de bio-microrobos magneticos para aplicacao em biotecnologia. Por outro lado, microarquiteturas ocas de
SnS e ZnS decoradas com nanoestruturas foram sintetizadas por evaporacao termica livre de
catalisadores utilizando microfios de metal e po de enxofre como materiais de partida. Para o
SnS, observamos formacao de uma estrutura oca composta por uma camada metalica de Sn na
superficie interna, e uma camada de SnS de estrutura ortorrombica com nanoestruturas de SnS
na superficie. Para o ZnS, descobrimos a formacao de uma esfera oca com uma camada
metalica na parte interna, uma camada de ZnS com fase cubica, e sobre ela nanoestruturas de
ZnS com fase cristalina hexagonal cresceram homogeneamente. O diametro da microsfera e
de 415 ¿Êm e os nanofios tem um diametro e comprimento medio de 70 nm e 7 ¿Êm,
respectivamente. As microestruturas ocas semicondutoras de ZnS e SnS exibiram atividade
eficiente para degradar azul de metileno sob irradiao com luz solar simulada. Os resultados
revelam que essas nano/microestruturas possuem alta fotoatividade para degradacao organica. / The aim of this work is to synthesize hierarchically micro/nanostructured hollow
magnetic and semiconductor materials, to obtain a better understanding on the physical
properties, and find technological applications. Initially, hematite and magnetite microtubes
were synthesized by thermal oxidation process along with the presence of an applied electrical
current and using metallic iron microwire as a precursor. The volume fraction of both Fe2O3
(hematite) and Fe3O4 (magnetite) phase on microtubes can be controlled as well as surface
nanostructures formation of hematite by systematic change of the synthesis parameters such
as temperature, heating rate, annealing time and electrical current value. The oxidation
chemical reaction involves a process where a thin oxide layer is formed first on the metal
surface, followed by simultaneous outward diffusion of metal ions through the oxide scale
and inward diffusion of oxygen from the atmosphere into the core. In our case, the outward
diffusion is faster leading to the creation of vacancies which coalesce into voids forming the
microtubes. In situ electrical resistivity measurements were carried out during the oxidation
process showing the whole process of the microtube formation. Scanning electron microscopy
images show microtube morphology with diameter ranging from 40 ìm to 100 ìm and length
of 5 mm. X-ray powder diffraction measurements evidence the presence of hematite (Fe2O3)
and magnetite (Fe3O4) crystal phases comprising microtubes. Nanostructures of hematite
appear in form of sticks and wires homogeneously dispersed on the microtube surface with
diameters ranking from 80 nm to 300 nm and length of 1 to 5 ìm. In vitro experiments
involving adherence, migration, and proliferation of fibroblasts cell culture on the surface of
the microtubes indicated the absence of immediate cytotoxicity for this material. We have also
calculated both torque and driving magnetic force for these microtubes with nanowires as a
function of external magnetic field gradient which were found to be robust opening the
possibility for magnetic bio micro-robot device fabrication and application in biotechnology.
On the other hand, SnS and ZnS hollow microarchitectures decorated with
nanostructures were synthesized by catalysis free thermal evaporation technique using metal
microwires and sulfur powder as starting materials. For SnS, we observed a hollow formation
comprised of a thin metallic Sn layer in the inner surface, SnS orthorhombic structure thick
layer with SnS nanostructures on the top. For ZnS, we found out the formation of hollow
sphere with a thin metallic layer in the inner part, a thick cubic phase layer of ZnS, and on this
second phase, nanostructures of ZnS hexagonal crystal phase grew up homogeneously. The
microsphere diameter is about 415 ìm and the nanowires on the surface have average
diameter of 70 nm and length 7 ìm. ZnS and SnS hollow semiconducting microstructures
have exhibited efficient activity to degrade the methylene blue under simulated sunlight
irradiation. The results reveal that these nano/microstructures have high photoactivity to
organic degradation.
|
123 |
Absolute photoluminescence quantum yields of IR26 and IR-emissive Cd₁₋ₓHgₓTe and PbS quantum dots: method- and material-inherent challengesHatami, Soheil, Würth, Christian, Kaiser, Martin, Leubner, Susanne, Gabriel, Stefanie, Bahrig, Lydia, Lesnyak, Vladimir, Pauli, Jutta, Gaponik, Nikolai, Eychmüller, Alexander, Resch-Genger, Ute 16 December 2019 (has links)
Bright emitters with photoluminescence in the spectral region of 800–1600 nm are increasingly important as optical reporters for molecular imaging, sensing, and telecommunication and as active components in electrooptical and photovoltaic devices. Their rational design is directly linked to suitable methods for the characterization of their signal-relevant properties, especially their photoluminescence quantum yield (Φf ). Aiming at the development of bright semiconductor nanocrystals with emission >1000 nm, we designed a new NIR/IR integrating sphere setup for the wavelength region of 600–1600 nm. We assessed the performance of this setup by acquiring the corrected emission spectra and Φf of the organic dyes |trybe, IR140, and IR26 and several infrared (IR)-emissive Cd₁₋ₓHgₓTe and PbS semiconductor nanocrystals and comparing them to data obtained with two independently calibrated fluorescence instruments absolutely or relative to previously evaluated reference dyes. Our results highlight special challenges of photoluminescence studies in the IR ranging from solvent absorption to the lack of spectral and intensity standards together with quantum dot-specific challenges like photobrightening and photodarkening and the size-dependent air stability and photostability of differently sized oleate-capped PbS colloids. These effects can be representative of lead chalcogenides. Moreover, we redetermined the Φf of IR26, the most frequently used IR reference dye, to 1.1 × 10⁻³ in 1,2-dichloroethane DCE with a thorough sample reabsorption and solvent absorption correction. Our results indicate the need for a critical reevaluation of Φf values of IR-emissive nanomaterials and offer guidelines for improved Φf measurements.
|
124 |
Struktur-/Eigenschafts-Beziehungen in ternären Übergangs- und Seltenerdmetall-Pniktid-ChalkogenidenCzulucki, Andreas 15 April 2010 (has links)
Ziel dieser Arbeit war es, Beziehungen zwischen den kristallchemischen Eigenschaften und dem beobachteten anomalen Verhalten im spezifischen elektrischen Widerstand (nicht-magnetischer Kondo-Effekt) aufzuzeigen und zusammenhängend zu interpretieren. Verbindungen, an denen dieser Effekt beobachtet wurde, werden aus einem Übergangs-, oder Actinidmetall mit je einem Vertreter der 15. (Pniktogene) und 16. Gruppe (Chalkogene) des Periodensystems gebildet und kristallisieren im PbFCl-Strukturtyp. Da zu ternären Actinidmetall-Pniktid-Chalkogeniden (z.B. ThAsSe, UPS) nur sehr wenige chemische und kristallographische Informationen existieren, wurden in dieser Arbeit umfassende Untersuchungen zur Kristallchemie ternärer Phasen aus den Systemen M-Pn-Q (M = Zr, Hf, La-Ce; Pn = As, Sb; Q = Se, Te durchgeführt. Der Schwerpunkt lag dabei auf der strukturellen Lokalisierung der beobachteten Widerstandsanomalie und der Erarbeitung chemisch-physikalischer Eigenschaftsbeziehungen. Die Darstellung der untersuchten ternären Phasen in Form von Einkristallen gelang über exothermen Chemischen Transport mit Jod. Da die erhaltenen Kristalle bis zu mehreren Millimetern groß sind, konnten an ein und demselben Kristallindividuum sowohl die stoffliche Charakterisierung (EDXS, WDXS, ICP-OES, LA-ICP-MS, CIC) und die strukturelle Charakterisierung, als auch die Messung der physikalischen Eigenschaften erfolgen. Es konnte u.a. gezeigt werden, dass ZrAs1,4Se0,5 und HfAs1,7Se0,2 ein ähnlich ungewöhnliches Verhalten im temperaturabhängigen elektrischen Widerstand zeigen, welches bereits an Thorium-Arsenid-Seleniden und Uran-Phosphid-Sulfiden beobachtet wurde. Desweiteren gelang es den beobachteten Verlauf im elektrischen Widerstand, mit seinem Minium bei etwa T = 15 K, auf intrinsische strukturelle Merkmale in der anionischen Arsen-Teilstruktur zurückzuführen. / The aim of this work was, to evaluate and interpret a relationship between the crystal-chemical properties and the observed unusual behavior in the electrical resistivity (non-magnetic Kondo-effect). Compounds, which show such an effect, are formed by a transition- or actinide-metal with both a group 15 element and a group 16 element of the periodic table. All these compounds crystallizing in the PbFCl type of structure. Because of less crystallographic and chemical information about actinide-metal-pnictide-chalcogenides (i.e. ThAsSe, UPS), intensive investigation were made concerning the crystal-chemistry of ternary phases of the systems M-Pn-Q (M = Zr, Hf, La-Ce; Pn = As, Sb; Q = Se, Te. Our studies were focused on the structurally localization of the observed anomaly in the electrical resistivity and the evaluation of chemical-physical relations of properties. The synthesis of the investigated ternary phases was realized by exothermically Chemical Transport with iodine as transport agent. The dimension of the synthesized crystals allowed a chemical (EDXS, WDXS, ICP-OES, LA-ICP-MS, CIC) and structurally characterization, as well as a determination of the physical properties on one large single crystal. It could be shown, that ZrAs1,4Se0,5 and HfAs1,7Se0,2 reveal a similar unusual behavior in the temperature dependent electrical resistivity, as it was observed in thorium-arsenide-selenides and uranium-phosphide-sulphides. In conclusion, the non-magnetic Kondo-effect, which was found in the low-temperature range (about 15 K), arises from structurally features of the anionic sublattice with arsenic.
|
125 |
Deposition and Characterization of Solution-Processed Chalcogenides for Photovoltaic ApplicationsDavid J Rokke (12468882) 27 April 2022 (has links)
<p> </p>
<p>Combating climate change requires society to shift to using clean, renewable sources of energy as quickly as possible. Photovoltaics (PVs) are a promising source of renewable energy due to the broad availability of solar radiation over the Earth’s surface and the low cost of PV modules. While silicon solar cells dominate the current PV market, some drawbacks motivate the search for other solar materials. Silicon’s indirect band gap necessitates using<br>
thick (>100 μm) absorber layers which limits applications to rigid substrates, and manufacturing silicon wafers suitable for solar cell applications requires slow batch processes,<br>
hindering the rapid deployment of PV technology.</p>
<p><br>
One opportunity for realizing rapid manufacturing of PV modules is solution processing, wherein a solar cell is deposited with the use of liquid solutions containing the necessary constituent elements. A solution processing approach could be done in a roll-to-roll format in which a flexible substrate is coated at high speed to create a thin, flexible PV device. Such an approach is expected to dramatically increase the throughput capability of a photovoltaic manufacturing line. To realize the benefits of solution processing, suitable liquid-phase chemistries must be developed to enable the deposition of the desired absorber material while minimizing the incorporation of undesirable contaminants. One such approach is the<br>
amine-thiol solvent system which is notable for its ability to solubilize not only metal salts, but also metal sulfides, metal selenides, and pure metals. This makes the amine-thiol system a promising candidate for the deposition of metal chalcogenide absorber layer materials.</p>
<p><br>
In this work, the chemistry of the amine-thiol system is studied in detail and reaction mechanisms governing the interaction of amine-thiol solutions with precursors relevant to the Cu(In,Ga)(S,Se)2 material system are investigated. Nuclear Magnetic Resonance, Mass Spectrometry, and X-Ray Absorption measurements are performed to study this system. Structures for the metal thiolate species that form in these reactions are proposed, along with the products of the pyrolysis reaction that converts the thiolate species to the desired metal sulfides. The utility of this understanding is discussed.</p>
<p><br>
The amine-thiol system is further applied to the synthesis of AgIn(S,Se)2, a material with some similarities to the more common metal chalcogenide CuInSe2 but studied far less<br>
thoroughly. The material and optoelectronic properties of AgIn(S,Se)2 are characterized. X-Ray Diffraction, Hall Effect Measurements, Kelvin Probe Force Miscropscopy, and Quantitative Photoluminescence are all performed on AgIn(S,Se)2 thin films. AgIn(S,Se)2 films are found to exhibit high carrier mobility, benign grain boundaries, and strong photoluminescence emission, suggesting that AgIn(S,Se)2 may function as an effective absorber layer<br>
material for thin-film solar cells. Challenges facing its successful adoption as a solar cell material as discussed.<br>
</p>
<p>In this work, a novel method is developed to calibrate photoluminescence spectrometers for absolute photon counts, enabling one to calculate the absolute number of photons leaving a photoluminescence sample. This enables an estimation of the Quasi-Fermi Level Splitting of an absorber layer (and hence open-circuit voltage of a solar cell) while only measuring a bare absorber layer film. The experimental method and required numerical analysis of the<br>
data are described herein.</p>
|
126 |
Gap Engineering and Simulation of Advanced MaterialsPrasai, Kiran January 2017 (has links)
No description available.
|
127 |
Second Phase Filamentation and Bulk Conduction in Amorphous Thin FilmsSimon, Mark Alexander 10 June 2011 (has links)
No description available.
|
128 |
Atomic Layer Deposition of Antimony Telluride Based MultilayersYang, Jun 11 November 2024 (has links)
This thesis concentrates on advancing the thermal atom layer deposition (ALD) of Sb2Te3 and related multilayered metal chalcogenide thin films. It involves depositing a sub-monolayer of the target compound during each ALD cycle through successive, separated, and self-limiting gas-solid reactions between typically two gaseous reactants. The low deposition temperatures facilitate the creation of unconventional combinations of multilayers in distinct thermodynamic regimes. The well-defined chemical reactions inherent in ALD processes yield layers with ideal stoichiometry, and subsequent heat treatment enhances crystallite size and interface quality. Various methodologies have been explored to manipulate the optical and electrical properties of these thin films, demonstrating the capacity to tune their electrical and thermal transport properties using ALD.:Abstract
Table of Contents
Acknowledgments
1. Introduction
2. Background and Motivation
2.1. Basic Features of ALD
2.2. ALD of Metal Chalcogenides
2.3. Functional Properties
2.3.1. Photoresponse Effect
2.3.2. Thermoelectric Effect
2.4. State-of-art in Sb2Te3 and Related Multilayers
3. Experimental Techniques
3.1. Thin Films and Devices Preparation
3.2. Transport Property Evaluation
4. Wafer-Scale Growth of Sb2Te3 for Photodetectors
4.1. Microstructure Characterization
4.2. Rectifying Behaviour
4.3. Photoresponse Behaviour
4.4. DFT Calculation
4.5. High Yield Integration
4.6. Conclusion
5. Sb2Te3 with Insulator SbOx Layer
5.1. Microstructure Characterization
5.2. Sb2Te3 with Single-cycle of SbOx
5.3. Sb2Te3 with Multi-cycles of SbOx
5.4. Comparison of TE Performance
5.5. Conclusion
6. Sb2Te3 with Semiconductor Sb2Se3 Layer
6.1. Microstructure Characterization
6.2. Transport Properties
6.3. Thermal Conductivity and zT Values
6.4. Conclusion
7. Conclusion and Outlook
Appendix: Wafer-Scale Growth of Sb2Te3 for Photodetectors
Bibliography
|
129 |
Transition metal solar absorbersAltschul, Emmeline Beth 02 July 2012 (has links)
A new approach to the discovery of high absorbing semiconductors for solar cells was taken by working under a set of design principles and taking a systemic methodology. Three transition metal chalcogenides at varying states of development were evaluated within this framework. Iron pyrite (FeS���) is well known to demonstrate excellent absorption, but the coexistence with metallic iron sulfides was found to disrupt its semiconducting properties. Manganese diselenide (MnSe���), a material heavily researched for its magnetic properties, is proposed as a high absorbing alternative to iron pyrite that lacks destructive impurity phases. For the first time, a MnSe��� thin film was synthesized and the optical properties were characterized. Finally, CuTaS���, a known but never characterized material, is also proposed as a high absorbing semiconductor based on the design principles and experimental results. / Graduation date: 2013
|
130 |
Ruthenium Complexes Of Chiral And Achiral Phosphorus Ligands Based On The P-N-P MotifVenkatakrishnan, T S 06 1900 (has links)
In recent years there is an increasing awareness of the importance of chiral phosphorus ligands in transition metal organometallic chemistry because of the utility of such complexes in homogeneous catalytic reactions. This thesis deals with synthetic, spectroscopic and X-ray crystallographic studies on ruthenium complexes of chiral and achiral P-N-P type ligands, known as "diphosphazanes", with emphasis on ruthenium carbonyl clusters. Several ruthenium carbonyl clusters have been synthesized and characterized by elemental analyses, ER and NMR (lH, nC and 3lP) spectroscopic data. In several instances, the molecular structures of the clusters have been confirmed by single crystal X-ray diffraction studies.
Chapter 1 provides a brief overview of various types of chiral phosphorus ligands and general synthetic routes to diphosphazanes. A brief review of the transition metal chemistry of diphosphazanes and diphosphazane chalcogenides (published since 1994) is presented A review of the literature on the carbonyl clusters of the group-8 transition metals (Fe, Ru, Os) bearing mono- and diphosphines is also included in this chapter The scope and aim of the present investigation is outlined at the end of this chapter.
Chapter 2 provides the results obtained in the present investigation and a detailed discussion of the spectroscopic and crystallographic data. The essential feature of the work is summarized at the end of the chapter.
Chapter 3 gives a detailed account of the experimental procedure for the synthesis of the compounds and spectroscopic and analytical measurements. The experimental details of X-ray structure determination are also given in this chapter. To save space, the coordinates of the H-atoms and the calculated and observed structure factor tables are not included. In some cases, reference to CCDC deposition number is included.
The references of the literature are compiled at the end of the thesis and are indicated in the text by appropriate numbers appearing as superscripts. The compounds synthesized in the present study are represented by bold Arabic numerals and are listed in Appendix I. The abbreviations employed in the thesis conform to those generally used in Chemical Abstracts.
|
Page generated in 0.0616 seconds