• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1879
  • 347
  • 318
  • 250
  • 156
  • 112
  • 90
  • 73
  • 70
  • 56
  • 36
  • 33
  • 21
  • 14
  • 13
  • Tagged with
  • 4201
  • 463
  • 429
  • 331
  • 317
  • 310
  • 302
  • 279
  • 262
  • 245
  • 244
  • 244
  • 243
  • 231
  • 221
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Communication over MIMO Multi-User Systems: Signalling and Fairness

Maddah-Ali, Mohammad Ali January 2007 (has links)
Employment of the multiple-antenna transmitters/receivers in communication systems is known as a promising solution to provide high-data-rate wireless links. In the multi-user environments, the problems of signaling and fairness for multi-antenna systems have emerged as challenging problems. This dissertation deals with these problems in several multi-antenna multi-user scenarios. In part one, a simple signaling method for the multi-antenna broadcast channels is proposed. This method reduces the MIMO broadcast system to a set of parallel channels. The proposed scheme has several desirable features in terms of: (i) accommodating users with different number of receive antennas, (ii) exploiting multi-user diversity, and (iii) requiring low feedback rate. The simulation results and analytical evaluations indicate that the achieved sum-rate is close to the sum-capacity of the underlying broadcast channel. In part two, for multiple-antenna systems with two transmitters and two receivers, a new non-cooperative scenario of data communication is studied in which each receiver receives data from both transmitters. For such a scenario, a signaling scheme is proposed which decomposes the system into two broadcast or two multi-access sub-channels. Using the decomposition scheme, it is shown that this signaling scenario outperforms the other known non-cooperative schemes in terms of the achievable multiplexing gain. In particular for some special cases, the achieved multiplexing gain is the same as the multiplexing gain of the system, where the full cooperation is provided between the transmitters and/or between the receivers. Part three investigates the problem of fairness for a class of systems for which a subset of the capacity region, which includes the sum-capacity facets, forms a polymatroid structure. The main purpose is to find a point on the sum-capacity facet which satisfies a notion of fairness among active users. This problem is addressed in the cases where the complexity of achieving interior points is not feasible, and where the complexity of achieving interior points is feasible. In part four, $K$-user memoryless interference channels are considered; where each receiver sequentially decodes the data of a subset of transmitters before it decodes the data of the designated transmitter. A greedy algorithm is developed to find the users which are decoded at each receiver and the corresponding decoding order such that the minimum rate of the users is maximized. It is proven that the proposed algorithm is optimal. The results of the parts three and four are presented for general channels which include the multiple-antenna systems as special cases.
262

Feedback and Cooperation in Wireless Networks

Abdoli Hoseinabadi, Mohammad Javad January 2012 (has links)
The demand for wireless data services has been dramatically growing over the last decade. This growth has been accompanied by a significant increase in the number of users sharing the same wireless medium, and as a result, interference management has become a hot topic of research in recent years. In this dissertation, we investigate feedback and transmitter cooperation as two closely related tools to manage the interference and achieve high data rates in several wireless networks, focusing on additive white Gaussian noise (AWGN) interference, X, and broadcast channels. We start by a one-to-many network, namely, the three-user multiple-input multiple-output (MIMO) Gaussian broadcast channel, where we assume that the transmitter obtains the channel state information (CSI) through feedback links after a finite delay. We also assume that the feedback delay is greater than the channel coherence time, and thus, the CSI expires prior to being exploited by the transmitter for its current transmission. Nevertheless, we show that this delayed CSI at the transmitter (delayed CSIT) can help the transmitter to achieve significantly higher data rates compared to having no CSI. We indeed show that delayed CSIT increases the channel degrees of freedom (DoF), which is translated to an unbounded increase in capacity with increasing signal-to-noise-ratio (SNR). For the symmetric case, i.e. with the same number of antennas at each receiver, we propose different transmission schemes whose achievable DoFs meet the upper bound for a wide range of transmit-receive antenna ratios. Also, for the general non-symmetric case, we propose transmission schemes that characterize the DoF region for certain classes of antenna configurations. Subsequently, we investigate channels with distributed transmitters, namely, Gaussian single-input single-output (SISO) K-user interference channel and 2×K X channel under the delayed CSIT assumption. In these channels, in major contrast to the broadcast channel, each transmitter has access only to its own messages. We propose novel multiphase transmission schemes wherein the transmitters collaboratively align the past interference at appropriate receivers using the knowledge of past CSI. Our achievable DoFs are greater than one (which is the channel DoF without CSIT), and strictly increasing in K. Our results are yet the best available reported DoFs for these channels with delayed CSIT. Furthermore, we consider the K-user r-cyclic interference channel, where each transmitter causes interference on only r receivers in a cyclic manner. By developing a new upper bound, we show that this channel has K/r DoF with no CSIT. Moreover, by generalizing our multiphase transmission ideas, we show that, for r=3, this channel can achieve strictly greater than K/3 DoF with delayed CSIT. Next, we add the capability of simultaneous transmission and reception, i.e. full-duplex operation, to the transmitters, and investigate its impact on the DoF of the SISO Gaussian K-user interference and M×K X channel under the delayed CSIT assumption. By proposing new cooperation/alignment techniques, we show that the full-duplex transmitter cooperation can potentially yield DoF gains in both channels with delayed CSIT. This is in sharp contrast to the previous results on these channels indicating the inability of full-duplex transmitter cooperation to increase the channel DoF with either perfect instantaneous CSIT or no CSIT. With the recent technological advances in implementation of full-duplex communication, it is expected to play a crucial role in the future wireless systems. Finally, we consider the Gaussian K-user interference and K×K X channel with output feedback, wherein each transmitter causally accesses the output of its paired receiver. First, using the output feedback and under no CSIT assumption, we show that both channels can achieve DoF values greater than one, strictly increasing in K, and approaching the limiting value of 2 as K→∞. Then, we develop transmission schemes for the same channels with both output feedback and delayed CSIT, known as Shannon feedback. Our achievable DoFs with Shannon feedback are greater than those with the output feedback for almost all values of K.
263

Code design based on metric-spectrum and applications

Papadimitriou, Panayiotis D. 17 February 2005 (has links)
We introduced nested search methods to design (n, k) block codes for arbitrary channels by optimizing an appropriate metric spectrum in each iteration. For a given k, the methods start with a good high rate code, say k/(k + 1), and successively design lower rate codes up to rate k/2^k corresponding to a Hadamard code. Using a full search for small binary codes we found that optimal or near-optimal codes of increasing length can be obtained in a nested manner by utilizing Hadamard matrix columns. The codes can be linear if the Hadamard matrix is linear and non-linear otherwise. The design methodology was extended to the generic complex codes by utilizing columns of newly derived or existing unitary codes. The inherent nested nature of the codes make them ideal for progressive transmission. Extensive comparisons to metric bounds and to previously designed codes show the optimality or near-optimality of the new codes, designed for the fading and the additive white Gaussian noise channel (AWGN). It was also shown that linear codes can be optimal or at least meeting the metric bounds; one example is the systematic pilot-based code of rate k/(k + 1) which was proved to meet the lower bound on the maximum cross-correlation. Further, the method was generalized such that good codes for arbitrary channels can be designed given the corresponding metric or the pairwise error probability. In synchronous multiple-access schemes it is common to use unitary block codes to transmit the multiple users’ information, especially in the downlink. In this work we suggest the use of newly designed non-unitary block codes, resulting in increased throughput efficiency, while the performance is shown not to be substantially sacrificed. The non-unitary codes are again developed through suitable nested searches. In addition, new multiple-access codes are introduced that optimize certain criteria, such as the sum-rate capacity. Finally, the introduction of the asymptotically optimum convolutional codes for a given constraint length, reduces dramatically the search size for good convolutional codes of a certain asymptotic performance, and the consequences to coded code-division multiple access (CDMA) system design are highlighted.
264

Applying cross-channel user experience design theory to practice : A case study of a public transportation company in Sweden

Lång, Ida, Schlegel, Anne January 2015 (has links)
The emergence of digital technology, social media and ubiquitous computing in the 21stcentury changed customer behavior and created new possibilities, but also challenges, forcompanies offering their services. The new customer generation is more tech-savvy thanever before, and therefore places higher demands on companies to have well-designed experienceswith services that can be consumed through various channels. This study investigatesthese service environments to see if they are actively shaped to cross-channel ecosystemsby the companies or if the companies react to the demands of their customers. Furthermore,the goal of this thesis is to find out how the current theory of cross-channel userexperience can assist in formulating design strategies for service ecosystems. To determinethis, the authors conducted a theoretical analysis of the current IS literature and created,based on that, a cross-channel user experience design framework. Within a case study of aSwedish transportation company, company and user interviews, direct observations of theavailable service artifacts, analysis of documentation, and the design of the user journeyswere executed to assess the as-is ecosystem. On the basis of these results, it was proventhat cross-channel ecosystems are shaped based on user demands. The created frameworkwas applied to formulate a language of critique of the cross-channel user experience designof the underlying case study, and the framework was proven to be applicative to practiceafter adjusting it to its final version.
265

Achievable rates for Gaussian Channels with multiple relays

Coso Sánchez, Aitor del 12 September 2008 (has links)
Los canales múltiple-entrada-múltiple-salida (MIMO) han sido ampliamente propuestos para superar los desvanecimientos aleatorios de canal en comunicaciones inalámbricas no selectivas en frecuencia. Basados en equipar tanto transmisores como receptores con múltiple antenas, sus ventajas son dobles. Por un lado, permiten al transmisor: i) concentrar la energía transmitida en una dirección-propia determinada, o ii) codificar entre antenas con el fin de superar desvanecimientos no conocidos de canal. Por otro lado, facilitan al receptor el muestreo de la señal en el dominio espacial. Esta operación, seguida por la combinación coherente de muestras, aumenta la relación señal a ruido de entrada al receptor. De esta forma, el procesado multi-antena es capaz de incrementar la capacidad (y la fiabilidad) de la transmisión en escenarios con alta dispersión.Desafortunadamente, no siempre es posible emplazar múltiples antenas en los dispositivos inalámbricos, debido a limitaciones de espacio y/o coste. Para estos casos, la manera más apropiada de explotar el procesado multi-antena es mediante retransmisión, consistente en disponer un conjunto de repetidores inalámbricos que asistan la comunicación entre un grupo de transmisores y un grupo de receptores, todos con una única antena. Con la ayuda de los repetidores, por tanto, los canales MIMO se pueden imitar de manera distribuida. Sin embargo, la capacidad exacta de las comunicaciones con repetidores (así como la manera en que este esquema funciona con respeto al MIMO equivalente) es todavía un problema no resuelto. A dicho problema dedicamos esta tesis.En particular, la presente disertación tiene como objetivo estudiar la capacidad de canales Gaussianos asistidos por múltiples repetidores paralelos. Dos repetidores se dicen paralelos si no existe conexión directa entre ellos, si bien ambos tienen conexión directa con la fuente y el destino de la comunicación. Nos centramos en el análisis de tres canales ampliamente conocidos: el canal punto-a-punto, el canal de múltiple-acceso y el canal de broadcast, y estudiamos su mejora de funcionamiento con repetidores. A lo largo de la tesis, se tomarán las siguientes hipótesis: i) operación full-duplex en los repetidores, ii) conocimiento de canal tanto en transmisión como en recepción, y iii) desvanecimiento sin memoria, e invariante en el tiempo.En primer lugar, analizamos el canal con múltiples repetidores paralelos, en el cual una única fuente se comunica con un único destino en presencia de N repetidores paralelos. Derivamos límites inferiores de la capacidad del canal por medio de las tasas de transmisión conseguibles con distintos protocolos: decodificar-y-enviar, decodificar-parcialmente-y-enviar, comprimir-y-enviar, y repetición lineal. Asimismo, con un fin comparativo, proveemos un límite superior, obtenido a través del Teorema de max-flow-min-cut. Finalmente, para el número de repetidores tendiendo a infinito, presentamos las leyes de crecimiento de todas las tasas de transmisión, así como la del límite superior.A continuación, la tesis se centra en el canal de múltiple-acceso (MAC) con múltiples repetidores paralelos. El canal consiste en múltiples usuarios comunicándose simultáneamente con un único destino en presencia de N repetidores paralelos. Derivamos una cota superior de la región de capacidad de dicho canal utilizando, de nuevo, el Teorema de max-flow-min-cut, y encontramos regiones de tasas de transmisión conseguibles mediante: decodificar-y-enviar, comprimir-y-enviar, y repetición lineal. Asimismo, se analiza el valor asintótico de dichas tasas de transmisión conseguibles, asumiendo el número de usuarios creciendo sin límite. Dicho estudio nos permite intuir el impacto de la diversidad multiusuario en redes de acceso con repetidores.Finalmente, la disertación considera el canal de broadcast (BC) con múltiples repetidores paralelos. En él, una única fuente se comunica con múltiples destinos en presencia de N repetidores paralelos. Para dicho canal, derivamos tasas de transmisión conseguibles dado: i) codificación de canal tipo dirty paper en la fuente, ii) decodificar-y-enviar, comprimir-y-enviar, y repetición lineal, respectivamente, en los repetidores. Además, para repetición lineal, demostramos que la dualidad MAC-BC se cumple. Es decir, la región de tasas de transmisión conseguibles en el BC es igual a aquélla del MAC con una limitación de potencia suma. Utilizando este resultado, se derivan algoritmos de asignación óptima de recursos basados en teoría de optimización convexa. / Multiple-input-multiple-output (MIMO) channels are extensively proposed as a means to overcome the random channel impairments of frequency-flat wireless communications. Based upon placing multiple antennas at both the transmitter and receiver sides of the communication, their virtues are twofold. On the one hand, they allow the transmitter: i) to concentrate the transmitted power onto a desired eigen-direction, or ii) tocode across antennas to overcome unknown channel fading. On the other hand, they permit the receiver to sample the signal on the space domain. This operation, followed by the coherent combination of samples, increases the signal-to-noise ratio at the input of the detector. In fine, MIMO processing is able to provide large capacity (and reliability) gains within rich-scattered scenarios.Nevertheless, equipping wireless handsets with multiple antennas is not always possible or worthwhile. Mainly, due to size and cost constraints, respectively. For these cases, the most appropriate manner to exploit multi-antenna processing is by means of relaying. This consists of a set of wireless relay nodes assisting the communication between a set of single-antenna sources and a set of single-antenna destinations. With the aid of relays, indeed, MIMO channels can be mimicked in a distributed way. However, the exact channel capacity of single-antenna communications with relays (and how this scheme performs with respect to the equivalent MIMO channel) is a long-standing open problem. To it we have devoted this thesis.In particular, the present dissertation aims at studying the capacity of Gaussian channels when assisted by multiple, parallel, relays. Two relays are said to be parallel if there is no direct link between them, while both have direct link from the source and towards the destination. We focus on three well-known channels: the point-to-point channel, the multi-access channel and the broadcast channel, and study their performance improvement with relays. All over the dissertation, the following assumptions are taken: i) full-duplex operation at the relays, ii) transmit and receive channel state information available at all network nodes, and iii) time-invariant, memory-less fading.Firstly, we analyze the multiple-parallel relay channel, where a single source communicates to a single destination in the presence of N parallel relays. The capacity of the channel is lower bounded by means of the achievable rates with different relaying protocols, i.e. decode-and-forward, partial decode-and-forward, compress-and-forward and linear relaying. Likewise, a capacity upper bound is provided for comparison, derived using the max-flow-min-cut Theorem. Finally, for number of relays growing to infinity, the scaling laws of all achievable rates are presented, as well as the one of the upper bound.Next, the dissertation focusses on the multi-access channel (MAC) with multiple-parallel relays. The channel consists of multiple users simultaneously communicating to a single destination in the presence of N parallel relay nodes. We bound the capacity region of the channel using, again, the max-flow-min-cut Theorem and find achievable rate regions by means of decode-and-forward, linear relaying and compress-and-forward. In addition, we analyze the asymptotic performance of the obtained achievable sum-rates, given the number of users growing without bound. Such a study allows us to grasp the impact of multi-user diversity on access networks with relays.Finally, the dissertation considers the broadcast channel (BC) with multiple parallel relays. This consists of a single source communicating to multiple receivers in the presence of N parallel relays. For the channel, we derive achievable rate regions considering: i) dirty paper encoding at the source, and ii) decode-and-forward, linear relaying and compress-and-forward, respectively, at the relays. Moreover, for linear relaying, we prove that MAC-BC duality holds. That is, the achievable rate region of the BC is equal to that of the MAC with a sum-power constraint. Using this result, the computation of the channel's weighted sum-rate with linear relaying is notably simplified. Likewise, convex resource allocation algorithms can be derived.
266

Linear Programming Decoding for Non-Uniform Sources and for Binary Channels With Memory

Cohen, ADAM 09 December 2008 (has links)
Linear programming (LP) decoding of low-density parity-check codes was introduced by Feldman et al. in [1]. In his formulation it is assumed that communication takes place over a memoryless channel and that the source is uniform. Here, we extend the LP decoding paradigm by studying its application to scenarios with source non-uniformity and to decoding over channels with memory. We develop two decoders for the scenario of non-uniform memoryless sources transmitted over memoryless channels. The first decoder uses a modified linear cost function which incorporates the a-priori source information and works with systematic codes. The second decoder differs by using non-systematic codes obtained by puncturing lower rate systematic codes and using an “extended decoding polytope.” Simulations show that the modified decoders yield gains over the standard LP decoder. Next, LP decoding is considered for two channels with memory: the binary additive Markov noise channel and the infinite-memory non-ergodic Polya-contagion channel. For the Markov channel, no linear cost function corresponding to maximum likelihood (ML) decoding could be obtained and hence it is unclear how to proceed. For the Polya channel, two LP-based decoders are developed. The first is derived in a straightforward manner from the ML decoding rule of [2]. The second decoder relies on a simplification of the same ML decoding rule which holds for codes containing the all-ones codeword. Simulations are performed for both decoders with regular and irregular LDPC codes and demonstrate relatively good performance with respect to the channel epsilon-capacity. / Thesis (Master, Mathematics & Statistics) -- Queen's University, 2008-12-08 16:24:43.358
267

Imperfect Channel Knowledge for Interference Avoidance

Lajevardi, Saina Unknown Date
No description available.
268

Feedback and Cooperation in Wireless Networks

Abdoli Hoseinabadi, Mohammad Javad January 2012 (has links)
The demand for wireless data services has been dramatically growing over the last decade. This growth has been accompanied by a significant increase in the number of users sharing the same wireless medium, and as a result, interference management has become a hot topic of research in recent years. In this dissertation, we investigate feedback and transmitter cooperation as two closely related tools to manage the interference and achieve high data rates in several wireless networks, focusing on additive white Gaussian noise (AWGN) interference, X, and broadcast channels. We start by a one-to-many network, namely, the three-user multiple-input multiple-output (MIMO) Gaussian broadcast channel, where we assume that the transmitter obtains the channel state information (CSI) through feedback links after a finite delay. We also assume that the feedback delay is greater than the channel coherence time, and thus, the CSI expires prior to being exploited by the transmitter for its current transmission. Nevertheless, we show that this delayed CSI at the transmitter (delayed CSIT) can help the transmitter to achieve significantly higher data rates compared to having no CSI. We indeed show that delayed CSIT increases the channel degrees of freedom (DoF), which is translated to an unbounded increase in capacity with increasing signal-to-noise-ratio (SNR). For the symmetric case, i.e. with the same number of antennas at each receiver, we propose different transmission schemes whose achievable DoFs meet the upper bound for a wide range of transmit-receive antenna ratios. Also, for the general non-symmetric case, we propose transmission schemes that characterize the DoF region for certain classes of antenna configurations. Subsequently, we investigate channels with distributed transmitters, namely, Gaussian single-input single-output (SISO) K-user interference channel and 2×K X channel under the delayed CSIT assumption. In these channels, in major contrast to the broadcast channel, each transmitter has access only to its own messages. We propose novel multiphase transmission schemes wherein the transmitters collaboratively align the past interference at appropriate receivers using the knowledge of past CSI. Our achievable DoFs are greater than one (which is the channel DoF without CSIT), and strictly increasing in K. Our results are yet the best available reported DoFs for these channels with delayed CSIT. Furthermore, we consider the K-user r-cyclic interference channel, where each transmitter causes interference on only r receivers in a cyclic manner. By developing a new upper bound, we show that this channel has K/r DoF with no CSIT. Moreover, by generalizing our multiphase transmission ideas, we show that, for r=3, this channel can achieve strictly greater than K/3 DoF with delayed CSIT. Next, we add the capability of simultaneous transmission and reception, i.e. full-duplex operation, to the transmitters, and investigate its impact on the DoF of the SISO Gaussian K-user interference and M×K X channel under the delayed CSIT assumption. By proposing new cooperation/alignment techniques, we show that the full-duplex transmitter cooperation can potentially yield DoF gains in both channels with delayed CSIT. This is in sharp contrast to the previous results on these channels indicating the inability of full-duplex transmitter cooperation to increase the channel DoF with either perfect instantaneous CSIT or no CSIT. With the recent technological advances in implementation of full-duplex communication, it is expected to play a crucial role in the future wireless systems. Finally, we consider the Gaussian K-user interference and K×K X channel with output feedback, wherein each transmitter causally accesses the output of its paired receiver. First, using the output feedback and under no CSIT assumption, we show that both channels can achieve DoF values greater than one, strictly increasing in K, and approaching the limiting value of 2 as K→∞. Then, we develop transmission schemes for the same channels with both output feedback and delayed CSIT, known as Shannon feedback. Our achievable DoFs with Shannon feedback are greater than those with the output feedback for almost all values of K.
269

Enhancing P2P Systems over Wireless Mesh Networks

Cavalcanti de Castro, Marcel January 2011 (has links)
Due to its ability to deliver scalable and fault-tolerant solutions, applications based on the peer-to-peer (P2P) paradigm are used by millions of users on the internet. Recently, wireless mesh networks (WMNs) have attracted a lot of interest from both academia and industry, because of their potential to provide flexible and alternative broadband wireless internet connectivity. However, due to various reasons such as unstable wireless link characteristics and multi-hop forwarding operation, the performance of current P2P systems is rather low in WMNs. This dissertation studies the technological challenges involved while deploying P2P systems over WMNs. We study the benefits of location-awareness and resource replication to the P2P overlay while targeting efficient resource lookup in WMNs. We further propose a cross-layer information exchange between the P2P overlay and the WMN in order to reduce resource lookup delay by augmenting the overlay routing table with physical neighborhood and resource lookup history information. Aiming to achieve throughput maximization and fairness in P2P systems, we model the peer selection problem as a mathematical optimization problem by using a set of mixed integer linear equations. A study of the model reveals the relationship between peer selection, resource replication and channel assignment on the performance of P2P systems over WMNs. We extend the model by formulating the P2P download problem as chunk scheduling problem. As a novelty, we introduce constraints to model the capacity limitations of the network due to the given routing and channel assignment strategy. Based on the analysis of the model, we propose a new peer selection algorithm which incorporates network load information and multi-path routing capability. By conducting testbed experiments, we evaluate the achievable throughput in multi-channel multi-radio WMNs. We show that the adjacent channel interference (ACI) problem in multi-radio systems can be mitigated, making better use of the available spectrum. Important lessons learned are also outlined in order to design practical channel and channel bandwidth assignment algorithms in multi-channel multi-radio WMNs.
270

Distributed Emitter Detector Design under Imperfect Communication Channel

Patra, Soumyadip 09 August 2017 (has links)
We consider the distributed detection of an emitter using multiple sensors deployed at deterministic locations. The signal from the emitter follows a signal attenuation model dependent on the distance between the sensor and the emitter. The sensors transmit their decisions to the fusion center through a parallel access Binary Symmetric Channel (BSC) with a cross-over probability. We seek to optimize the detection performance under a prescribed false alarm at the sensor level and at the system level. We consider the triangular topology structure and using the least favorable emitter range study the impact of the BSC on the system level detection fusion rules. The MAJORITY fusion rule is found to be optimal under certain conditions.

Page generated in 0.0537 seconds