• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 8
  • 1
  • 1
  • Tagged with
  • 37
  • 37
  • 17
  • 15
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

PERFORMANCE OF FQPSK TRANSCEIVERS IN A COMPLEX REAL-LIFE INTERFERENCE ENVIRONMENT

Haghdad, Mehdi, Feher, Kamilo 10 1900 (has links)
International Telemetering Conference Proceedings / October 23-26, 2000 / Town & Country Hotel and Conference Center, San Diego, California / The Bit Error Rate (BER) performance of FQPSK modulated signals in the presence of the Co-Channel Interference (CCI) and Additive White Gaussian Noise (AWGN) is evaluated and improved. A Non- Linearly Amplified (NLA) FQPSK modulated signal with the data rate of 1Mb/s and carrier frequency of 70 MHz is interfered with a sinusoidal signal at different frequencies. As the relative distance of the center frequency of the Co-channel interference (CCI) changes, different BER are obtained. The effect of the CCI decreases as the CCI center frequency moves away from the center of the modulated signal. In order to improve the BER in the presence of the CCI, a hard limited filter is added at the receiver input. The hard limited filter has a different amplification factor for different signal strength. As a result, the amplification factor for the CCI, which is normally a weaker signal, is smaller than the actual signal. This means that the signal is amplified more than the interference and as a result the CCI is suppressed and the BER rate improves. The results of both simulations and measurements are obtained for different CCI center frequencies, before and after the improvements.
12

Spectral Efficiency and Adjacent Channel Interference Performance Definitions and Requirements for Telemetry Applications

Feher, Kamilo, Jefferis, Robert, Law, Eugene 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Organizations such as the National Telecommunications and Information Administration (NTIA), Federal Communications Commission (FCC), International Telecommunications Union (ITU) and various commercial entities use a wide range of spectral efficiency criteria in different broadcast and wireless system applications. These criteria and related specifications have significant differences. This paper briefly reviews some common adjacent channel interference (ACI) definitions as well as issues surrounding the definition of spectral efficiency. The impact of these parameters on system bit error rate (BER) performance and closely "packed" adjacent signals is described. ACI criteria and spectral efficiency definitions considered appropriate for existing telemetry applications and deployment of new generations of spectrally efficient systems are illustrated. Specific ACI and spectral efficiency performance requirements adopted by the Department of Defense (DoD) and Advanced Range Telemetry (ARTM) project are highlighted.
13

ADJACENT CHANNEL INTERFERENCE MEASUREMENTS WITH CPFSK, CPM AND FQPSK-B SIGNALS

Law, Eugene 10 1900 (has links)
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California / This paper will present measured data in an adjacent channel interference (ACI) environment for filtered continuous phase frequency shift keying (CPFSK or FM), multi-h continuous phase modulation (multi-h CPM or CPM for short) [1] and Feher’s patented quadrature phase shift keying (FQPSK-B) [2]. This paper is an extension of my 2001 International Telemetering Conference paper on this topic [3]. The quantity measured was bit error probability (BEP) versus signal energy per bit to noise power spectral density ratio (E(b)/N(o)). The interferers were CPFSK, CPM, or FQPSK-B signals. The results presented in this paper will be for a desired signal bit rate of 5 Mb/s, one interferer 20 dB larger than desired signal (a few tests included two interferers), and various center frequency spacings, interfering signals, receivers, and demodulators. The overall ACI test effort will collect data sets at several bit rates and with one and two interferers. The results will be useful to system designers and range operators as they attempt to maximize the number of Mb/s that can be simultaneously transmitted with minimal interference in the telemetry bands.
14

PERFORMANCE OF SOQPSK AND MULTI-H CPM IN THE PRESENCE OF ADJACENT CHANNEL INTERFERENCE

Hill, Terrance J. 10 1900 (has links)
International Telemetering Conference Proceedings / October 22-25, 2001 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Multi-h CPM has been selected as the Tier II waveform for the Advanced Range Telemetry (ARTM) program, because it offers 50% better spectral efficiency than Feher-patented FQPSK, which is the Tier I waveform. Shaped Offset QPSK has been shown to be nearly identical in performance to Feher-patented FQPSK. Both the Tier I and Tier II waveforms must operate in the presence of adjacent channel interference in order to meet the range community's telemetry requirements. This paper presents an experimental characterization of SOQPSK and Multi-h CPM in the presence of adjacent channel interference, over a range of channel spacings and differential signal amplitudes. Quantitative results are presented which demonstrate the relative robustness of the ARTM Tier I and Tier II waveforms, with adjacent channel interference representative of a typical range environment.
15

A Resource Allocation Method Base on Cross-Entropy Algorithm with Guaranteed QoS in Multi-Cell OFDMA Systems

Hsiao, Shih-Lun 13 January 2012 (has links)
In multi-cell downlink OFDMA radio network system, users in one cell would suffer from the inter-cell interference caused by frequency reuse, namely co-channel interference. For a practical system, the inter-cell interference seriously decreases the quality of communication, especially for cell-edge users. Therefore, some interference management techniques, such as resources allocation, beamforming¡Ketc., will become an important issue in this system. Therefore, how to allocate resources to enhance cell-edge user performance and total system throughput is the major problem of our research. In this thesis, for management the inter-cell interference in multi-cell downlink OFDMA radio network system, a power allocation method based on the Cross-Entropy algorithm is proposed to find the sub-optimal solution and corresponding subcarriers allocation. In the system, it is considered that a sum-rate maximization problem while satisfying the target rate of both cell-edge users and cell-interior users. The simulation results show that the proposed method can effectively reduce interference between cells, and increases the transmission performance of cell-edge users and overall system throughput.
16

Lessons Learned Constructing the NG-Mesh Wireless Test-Bed

Ng, WK Stanley 10 1900 (has links)
<p>This thesis presents the lessons learned from building an IEEE 802.11 wireless mesh network (WMN) test-bed. Each network node consists of a Linux processor with multiple IEEE 802.11b/g transceivers operating in the 2.4 GHz band. Each transceiver consists of a medium access control (MAC) and base-band processor (BBP) in addition to a radio. A device driver was modified to control some of the key transceiver functions. The test-bed's Wi-Fi interfaces can be programmed to implement any mesh communication topology. All Wi-Fi interfaces use omni-directional antennas and the IEEE 802.11b operation mode.</p> <p>The test-bed design is easily extendable to incorporate newer Wi-Fi technologies. Measurements of co-channel interference in each Wi-Fi channel including received signal strength (RSS) and signal-to-interference-and-noise ratio (SINR) are presented. The AutoMin algorithm was developed in order to use the captured physical layer (PHY) metrics to avoid Wi-Fi congestion during test-bed operation. A comparison of a software-based spectrum analyzer to a commercial one is described. Key Wi-Fi functions in the Ralink driver source code are explored in depth. The compliance of the Ralink chip-set to the IEEE 802.11b spectral mask was verified. The maximum driver-induced retuning rate for the popular Ralink radio was found experimentally. This data can be used to optimize the performance of IEEE 802.11 WMNs.</p> / Master of Applied Science (MASc)
17

Feasibility Study and Performance Evaluation of Vehicle-to-Everything (V2X) Communications Applications

Choi, Junsung 13 September 2018 (has links)
Vehicular communications are a major subject of research and policy activity in industry, government, and academia. Dedicated Short-Range Communications (DSRC) is currently the main protocol used for vehicular communications, and it operates in the 5.9 GHz band. In addition to DSRC radios, other potential uses of this band include Wi-Fi, LTE-V, and communication among unlicensed devices. This dissertation presents an architecture and a feasibility analysis including field measurements and analysis for vehicle-to-train (V2T) communications, a safety-critical vehicular communication application. The dissertation also presents a survey of research relevant to each of several possible combinations of radio-spectrum and vehicular-safety regulations that would affect use of the 5.9 GHz band, identifies the most challenging of the possible resulting technical challenges, and presents initial measurements to assess feasibility of sharing the band by DSRC radios and other devices that operate on adjacent frequencies using different wireless communication standards. Although wireless technology is available for safety-critical communications, few applications have been developed to improve railroad crossing safety. A V2T communication system for a safety warning application with DSRC radios can address the need to prevent collisions between trains and vehicles. The dissertation presents a V2T early warning application architecture with a safety notification time and distance. We conducted channel measurements at a 5.86–5.91-GHz frequency and 5.9-GHz DSRC performance measurements at railroad crossings in open spaces, shadowed environments, and rural and suburban environments related to the presented V2T architecture. Our measurements and analyses show that the DSRC protocol can be adapted to serve the purpose of a V2T safety warning system. The 5.9 GHz band has been sought after by several stakeholders, including traditional mobile operators, DSRC proponents, unlicensed Wi-Fi proponents and Cellular-Vehicle-to-Everything (C-V2X) proponents. The FCC and National Highway Traffic Safety Administration (NHTSA), the two major organizations that are responsible for regulations related to vehicular communications, have not finalized rules regarding this band. The relative merits of the above mentioned wireless communication standards and coexistence issues between these standards are complex. There has been considerable research devoted to understanding the performance of these standards, but in some instances there are gaps in needed research. We have analyzed regulation scenarios that FCC and NHTSA are likely to consider and have identified the technical challenges associated with these potential regulatory scenarios. The technical challenges are presented and for each a survey of relevant technical literature is presented. In our opinion for the most challenging technical requirements that could be mandated by new regulations are interoperability between DSRC and C-V2X and the ability to detect either adjacent channel or co-channel coexisting interference. We conducted initial measurements to evaluate the feasibility of adjacent channel coexistence between DSRC, Wi-Fi, and C-V2X, which is one of the possible regulatory scenarios. We set DSRC at Channel 172, Wi-Fi at Channel 169 for 20 MHz bandwidth and at Channel 167 for 40 MHz, and C-V2X at Channel 174 with almost 100% spectrum capacity. From the measurements, we observed almost no effects on DSRC performance due to adjacent channel interference. Based on our results, we concluded that adjacent channel coexistence between DSRC, C-V2X, and Wi-Fi is possible. DSRC systems can provide good communication range; however, the range is likely to be reduced in the presence of interference and / or Non-Line-of-Sight (NLoS) conditions. Such environmental factors are the major influence on DSRC performance. By knowing the relationship between DSRC and environmental factors, DSRC radios can be set up in a way that promotes good performance in an environment of interest. We chose propagation channel characteristics to generate DSRC performance modelling by using estimation methods. The conducted DSRC performance measurements and propagation channel characteristics are independent; however, they share the same distance parameters. Results of linear regression to analyze the relationship between DSRC performance and propagation channel characteristics indicate that additional V2T measurements are required to provide data for more precise modeling. / PHD / Researchers and regulators in industry, government, and academic institutions are interested in vehicular communications. Dedicated Short-Range Communications (DSRC) is currently the standard protocol for communication between vehicles, including for safety applications, and operates in the band of radio frequencies near 5.9 GHz. In addition to operators of DSRC radios, other potential users are interested in using the 5.9 GHz band. This dissertation presents an architecture and a feasibility analysis including field measurements for vehicle-to-train (V2T) communications, a safety-critical vehicular communication application. The dissertation also identifies major technical challenges that could become important in the future for users of the 5.9 GHz band. The challenges will be different depending on what decisions government regulators make about the types of radios and communication protocols that are allowed in the 5.9 GHz band and about which types of radios should be used for vehicular safety. Although wireless technology is available for safety-critical communications, few applications have been developed to improve railroad crossing safety. To prevent collisions between trains and vehicles, we present a vehicle-to-train (V2T) communication system that uses DSRC radios to provide safety warnings to motorists. Although the term V2T is used, the emphasis is on communication from the train to vehicles. We present a high-level design, or architecture, of the warning system that includes goals for safety notification time and vi distance. We conducted measurements of radio channels near 5.9 GHz as well as measurements of 5.9 GHz DSRC radio link performance at the same locations (railroad crossings in open spaces, shadowed or obstructed environments, and rural and suburban environments). The measurements were performed to help decide whether the V2T warning system architecture would work. A DSRC system can provide good communication range; however, that range could be reduced if the DSRC system experiences interference from other radios or if the signal is partially blocked due to objects between the DSRC radios. The environmental factors are the most important influence on DSRC performance. By knowing the relationship between DSRC and environmental factors, manufacturers and operators can set up the radios to perform well in environments of interest. Although DSRC performance and radio channel characteristics were measured separately, they were measured in the same locations near railroad crossings. This made it possible to perform a statistical analysis of the relationship between DSRC performance and propagation channel characteristics. This analysis indicated that additional measurements will be required to collect enough data to develop robust statistical models that relate DSRC performance directly to measured channel characteristics. However, the results of the V2T measurements that we conducted near rural and suburban railroad crossings with varying numbers and types of obstacles to the radio signals provide a strong indication that DSRC can be used for to provide V2T safety warnings. The 5.9 GHz band has been sought after by several stakeholders, including traditional mobile operators and others who support use of the band for DSRC, unlicensed Wi-Fi, and CellularVehicle-to-Everything (C-V2X) communication. The FCC and National Highway Traffic Safety Administration (NHTSA), the two major organizations that are responsible for vii regulations related to vehicular communications, have not finalized the rules regarding this band. The relative merits of the above mentioned communication standards and coexistence issues between these standards are complex. There has been considerable research devoted to understanding the performance of these standards, but in some instances there are gaps in needed research. We have analyzed regulation scenarios that FCC and NHTSA are likely to consider and have identified the technical challenges associated with these potential regulatory scenarios. The technical challenges are presented and for each a survey of relevant technical literature is presented. In our opinion for the most challenging technical requirements that could result from new regulations are interoperability between DSRC and C-V2X and the ability to detect either adjacent channel or co-channel coexisting interference. We conducted initial measurements to evaluate the feasibility of adjacent channel coexistence between DSRC, Wi-Fi, and C-V2X, which is one of the possible regulatory scenarios. From the measurements, we observed almost no effect on DSRC performance when other types of radios used frequencies adjacent to the frequencies used by the DSRC radios. Based on our results, we concluded that adjacent channel coexistence between DSRC, C-V2X, and Wi-Fi is possible.
18

CPFSK, FQPSK-JR and ARTM CPM ON A ROCKET LAUNCH

Wolf, Glen, Ortigoza, Saul, Streich, Ronald G. 10 1900 (has links)
ITC/USA 2006 Conference Proceedings / The Forty-Second Annual International Telemetering Conference and Technical Exhibition / October 23-26, 2006 / Town and Country Resort & Convention Center, San Diego, California / A rocket launch, as high dynamics target, was used to demonstrate X-band tracking and also to verify high bit rate frequency planning while demonstrating significant bandwidth reduction with IRIG standard advanced modulation methods. X-band tracking by a modified 8-foot mobile telemetry antenna was excellent. Three separate S-band transmitters with three separate wraparound antennas were launched as a piggyback payload on an Enhanced Orion sounding rocket at White Sands Missile Range (WSMR) to compare the performance of 10 Mbs and 20 Mbs bit error rate (BER) pattern data transmission from CPFSK, FQPSK-JR and ARTM CPM modulation formats under high dynamic conditions. The test is more remarkable in that another S-band wideband spread spectrum signal was also transmitted with good success. These results show that all three modulation methods performed well during ignition and liftoff, low aspect angle (receiving through the rocket motor plume during ascent from a tracker near the launch pad), spin stabilization antenna lobe fades and payload tumbling. Spectrum pictures are provided to show the dramatic reduction in transmission bandwidth from CPFSK to FQPSK-JR to ARTM CPM. Confirmation of the preflight RF adjacent channel interference planning procedures from IRIG 106-05 is described by spectrum pictures and data quality measurements.
19

Enhancing P2P Systems over Wireless Mesh Networks

Cavalcanti de Castro, Marcel January 2011 (has links)
Due to its ability to deliver scalable and fault-tolerant solutions, applications based on the peer-to-peer (P2P) paradigm are used by millions of users on the internet. Recently, wireless mesh networks (WMNs) have attracted a lot of interest from both academia and industry, because of their potential to provide flexible and alternative broadband wireless internet connectivity. However, due to various reasons such as unstable wireless link characteristics and multi-hop forwarding operation, the performance of current P2P systems is rather low in WMNs. This dissertation studies the technological challenges involved while deploying P2P systems over WMNs. We study the benefits of location-awareness and resource replication to the P2P overlay while targeting efficient resource lookup in WMNs. We further propose a cross-layer information exchange between the P2P overlay and the WMN in order to reduce resource lookup delay by augmenting the overlay routing table with physical neighborhood and resource lookup history information. Aiming to achieve throughput maximization and fairness in P2P systems, we model the peer selection problem as a mathematical optimization problem by using a set of mixed integer linear equations. A study of the model reveals the relationship between peer selection, resource replication and channel assignment on the performance of P2P systems over WMNs. We extend the model by formulating the P2P download problem as chunk scheduling problem. As a novelty, we introduce constraints to model the capacity limitations of the network due to the given routing and channel assignment strategy. Based on the analysis of the model, we propose a new peer selection algorithm which incorporates network load information and multi-path routing capability. By conducting testbed experiments, we evaluate the achievable throughput in multi-channel multi-radio WMNs. We show that the adjacent channel interference (ACI) problem in multi-radio systems can be mitigated, making better use of the available spectrum. Important lessons learned are also outlined in order to design practical channel and channel bandwidth assignment algorithms in multi-channel multi-radio WMNs.
20

A Coverage Area Estimation Model for Interference-Limited Non-Line-of-Sight Point-to-Multipoint Fixed Broadband Wireless Communication Systems

RamaSarma, Vaidyanathan 04 October 2002 (has links)
First-generation, line-of-sight (LOS) fixed broadband wireless access techniques have been around for several years. However, services based on this technology have been limited in scope to service areas where transceivers can communicate with their base stations, unimpeded by trees, buildings and other obstructions. This limitation has serious consequences in that the system can deliver only 50% to 70% coverage within a given cell radius, thus affecting earned revenue. Next generation broadband fixed wireless access techniques are aimed at achieving a coverage area greater than 90%. To achieve this target, these techniques must be based on a point-to-multipoint (PMP) cellular architecture with low base station antennas, thus possessing the ability to operate in true non-line-of-sight (NLOS) conditions. A possible limiting factor for these systems is link degradation due to interference. This thesis presents a new model to estimate the levels of co-channel interference for such systems operating within the 3.5 GHz multichannel multipoint distribution service (MMDS) band. The model is site-specific in that it uses statistical building/roof height distribution parameters obtained from practically modeling several metropolitan cities in the U.S. using geographic information system (GIS) tools. This helps to obtain a realistic estimate and helps analyze the tradeoff between cell radius and modulation complexity. Together, these allow the system designer to decide on an optimal location for placement of customer premises equipment (CPE) within a given cell area. / Master of Science

Page generated in 0.1017 seconds