• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 42
  • 42
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Non-Hermitian polynomial hybrid Monte Carlo

Witzel, Oliver 22 September 2008 (has links)
In dieser Dissertation werden algorithmische Verbesserungen und Varianten für Simulationen der zwei-Flavor Gitter QCD mit dynamischen Fermionen studiert. Der O(a)-verbesserte Dirac-Wilson-Operator wird im Schrödinger Funktional mit einem Update des Hybrid Monte Carlo (HMC)-Typs verwendet. Sowohl der Hermitische als auch der nicht-Hermitische Operator werden betrachtet. Für den Hermitischen Dirac-Wilson-Operator untersuchen wir die Vorteile des symmetrischen gegenüber dem asymmetrischen Gerade-Ungerade-Präkonditionierens, wie man von einem mehr Zeitskalen-Integrator profitieren kann, sowie die Auswirkungen der kleinsten Eigenwerte auf die Stabilität des HMC Algorithmus. Im Fall des nicht-Hermitischen Operators leiten wir eine (semi)-analytische Schranke für das Spektrum her und zeigen eine Methode, um Informationen über den spektralen Rand zu gewinnen, indem wir komplexe Eigenwerte mit dem Lanczos-Algorithmus abschätzen. Diese spektralen Ränder erlauben es, Vorzüge des symmetrischen Gerade-Ungerade-Präkonditionierens oder den Effekt des Sheikholeslami-Wohlert-Terms für das Spektrum des nicht-Hermitischen Operators zu zeigen. Unter Verwendung der Informationen des spektralen Randes konstruieren wir angepasste, komplexe, skalierte und verschobene Tschebyschow Polynome zur Approximation des inversen Dirac-Wilson-Operators. Basierend auf diesen Polynomen entwickeln wir eine neue HMC-Variante, genannt nicht-Hermitischer polynomialer Hybrid Monte Carlo (NPHMC). Sie erlaubt, vom Importance Sampling unter Kompensation mit einem Gewichtungsfaktor abzuweichen. Zudem wird eine Erweiterung durch Anwendung des Hasenbusch-Tricks abgeleitet. Erste Größen der Leistungsfähigkeit, die die Abhängingkeit von den Eingabeparametern als auch einen Vergleich mit unserem Standard-HMC zeigen, werden präsentiert. Im Vergleich der beiden ein-Pseudofermion-Varianten ist der neue NPHMC etwas besser; eine eindeutige Aussage im Fall der zwei-Pseudofermion-Variante ist noch nicht möglich. / In this thesis algorithmic improvements and variants for two-flavor lattice QCD simulations with dynamical fermions are studied using the O(a)-improved Dirac-Wilson operator in the Schrödinger functional setup and employing a hybrid Monte Carlo-type (HMC) update. Both, the Hermitian and the Non-Hermitian operator are considered. For the Hermitian Dirac-Wilson operator we investigate the advantages of symmetric over asymmetric even-odd preconditioning, how to gain from multiple time scale integration as well as how the smallest eigenvalues affect the stability of the HMC algorithm. In case of the non-Hermitian operator we first derive (semi-)analytical bounds on the spectrum before demonstrating a method to obtain information on the spectral boundary by estimating complex eigenvalues with the Lanzcos algorithm. These spectral boundaries allow to visualize the advantage of symmetric even-odd preconditioning or the effect of the Sheikholeslami-Wohlert term on the spectrum of the non-Hermitian Dirac-Wilson operator. Taking advantage of the information of the spectral boundary we design best-suited, complex, scaled and translated Chebyshev polynomials to approximate the inverse Dirac-Wilson operator. Based on these polynomials we derive a new HMC variant, named non-Hermitian polynomial Hybrid Monte Carlo (NPHMC), which allows to deviate from importance sampling by compensation with a reweighting factor. Furthermore an extension employing the Hasenbusch-trick is derived. First performance figures showing the dependence on the input parameters as well as a comparison to our standard HMC are given. Comparing both algorithms with one pseudo-fermion, we find the new NPHMC to be slightly superior, whereas a clear statement for the two pseudo-fermion variants is yet not possible.
42

Lösungsoperatoren für Delaysysteme und Nutzung zur Stabilitätsanalyse

Gehre, Nico 06 April 2018 (has links)
In diese Dissertation werden lineare retardierte Differentialgleichungen (DDEs) und deren Lösungsoperatoren untersucht. Wir stellen eine neue Methode vor, mit der die Lösungsoperatoren für autonome und nicht-autonome DDEs bestimmt werden. Die neue Methode basiert auf dem Pfadintegralformalismus, der aus der Quantenmechanik und von der Analyse stochastischer Differentialgleichungen bekannt ist. Es zeigt sich, dass die Lösung eines Delaysystems zum Zeitpunkt t durch die Integration aller möglicher Pfade von der Anfangsbedingung bis zur Zeit t gebildet werden kann. Die Pfade bestehen dabei aus verschiedenen Schritten unterschiedlicher Längen und Gewichte. Für skalare autonome DDEs können analytische Ausdrücke des Lösungsoperators in der Literatur gefunden werden, allerdings existieren keine für nicht-autonome oder höherdimensionale DDEs. Mithilfe der neuen Methode werden wir die Lösungsoperatoren der genannten DDEs aufstellen und zusätzlich auf Delaysysteme mit mehreren Delaytermen erweitern. Dabei bestätigen wir unsere Ergebnisse sowohl analytisch wie auch numerisch. Die gewonnenen Lösungsoperatoren verwenden wir anschließend zur Stabilitätsanalyse periodischer Delaysysteme. Es werden zwei neue Verfahren präsentiert, die mithilfe des Lösungsoperators den transformierten Monodromieoperator des Delaysystems nähern und daraus die Stabilität bestimmen können. Beide neue Verfahren sind spektrale Methoden für autonome sowie nicht-autonome Delaysysteme und haben keine Einschränkungen wie bei der bekannten Chebyshev-Kollokationsmethode oder der Chebyshev-Polynomentwicklung. Die beiden bisherigen Verfahren beschränken sich auf Delaysysteme mit rationalem Verhältnis zwischen Periode und Delay. Außerdem werden wir eine bereits bekannte Methode erweitern und zu einer spektralen Methode für periodische nicht-autonome Delaysysteme entwickeln. Wir bestätigen alle drei neue Verfahren numerisch. Damit werden in dieser Dissertation drei neue spektrale Verfahren zur Stabilitätsanalyse periodischer Delaysysteme vorgestellt. / In this thesis linear delay differential equations (DDEs) and its solutions operators are studied. We present a new method to calculate the solution operators for autonomous and non-autonomous DDEs. The new method is related to the path integral formalism, which is known from quantum mechanics and the analysis of stochastic differential equations. It will be shown that the solution of a time delay system at time t can be constructed by integrating over all paths from the initial condition to time t. The paths consist of several steps with different lengths and weights. Analytic expressions for the solution operator for scalar autonomous DDEs can be found in the literature but no results exist for non-autonomous or high dimensional DDEs. With the help of the new method we can calculate the solution operators for such DDEs and for time delay systems with several delay terms. We verify our results analytically and numerically. We use the obtained solution operators for the stability analysis of periodic time delay systems. Two new methods will be presented to approximate the transformed monodromy operator with the help of the solution operator and to get the stability. Both new methods are spectral methods for autonomous and non-autonomous delay systems and have no limitations like the known Chebyshev collocation method or Chebyshev polynomial expansion. Both previously known methods are limited to time delay systems with a rational relation between period and delay. Furthermore we will extend a known method to a spectral method for non-autonomous time delay systems. We verify all three new methods numerically. Hence, in this thesis three new spectral methods for the stability analysis of periodic time delay systems are presented.

Page generated in 0.0508 seconds