• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 10
  • 6
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 74
  • 74
  • 32
  • 24
  • 20
  • 16
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Spectroscopic Studies of Small Molecule Adsorption and Oxidation on TiO2-Supported Coinage Metals and Zr6-based Metal-Organic Frameworks

Driscoll, Darren Matthew 02 May 2019 (has links)
Developing a fundamental understanding of the interactions between catalytic surfaces and adsorbed molecules is imperative to the rational design of new materials for catalytic, sorption and gas separation applications. Experiments that probed the chemistry at the gas-surface interface were employed through the utilization of in situ infrared spectroscopic measurements in high vacuum conditions to allow for detailed and systematic investigations into adsorption and reactive processes. Specifically, the mechanistic details of propene epoxidation on the surface of nanoparticulate Au supported on TiO2 and dimethyl chlorophosphate (DMCP) decomposition on the surface of TiO2 aerogel-supported Cu nanoparticles were investigated. In situ infrared spectroscopy illustrates that TiO2-supported Au nanoparticles exhibit the unprecedented ability to produce the industrially relevant commodity chemical, propene oxide, through the unique adsorption configuration of propene on the surface of Au and a hydroperoxide intermediate (-OOH) in the presence of gaseous hydrogen and oxygen. Whereas, TiO2-supported Cu aerogels oxidize the organophosphate-based simulant, DMCP, into adsorbed CO at ambient environments. Through a variety of spectroscopic methods, each step in these oxidative pathways was investigated, including: adsorption, oxidation and reactivation of the supported-nanoparticle systems to develop full mechanistic pictures. Additionally, the perturbation of vibrational character of the probe molecule, CO, was employed to characterize the intrinsic µ3-hydroxyls and molecular-level defects associated with the metal-organic framework (MOF), UiO-66. The adsorption of CO onto heterogeneous surfaces effectively characterizes surfaces because the C-O bond vibrates differently depending on the nature of the surface site. Therefore, CO adsorption was used within the high vacuum environment to identify atomic-level characteristics that traditional methods of analysis cannot distinguish. / Doctor of Philosophy / The interaction between small gas molecules and solid surfaces is important for environmental, industrial and military applications. In order to chemically change molecules, surfaces act to lower activation barriers and provide a low energy plane to create new chemical bonds. To study the fundamental interactions that occur between gas molecules and surfaces, we employ infrared spectroscopy in order to probe the vibrations of bonds at the gas–surface interface. By tracking the chemical bonds that break and form on the surface of different materials, we can develop surface reaction pathways for a variety of different chemical reactions. We focus our efforts on two different applications: the conversion of propene to propene oxide for industrial applications and the decomposition of chemical warfare agents. Using the techniques described above, we were able to develop reaction pathways for both propene oxidation and chemical warfare agent simulant degradation. Our work is critical to the further development of catalysts that harness the specific structural and chemical properties we identify as important and exploit them for further use.
42

Spectroscopic Studies of Small Molecule Oxidation Mechanisms on Cu/TiO2 Aerogel Surfaces

Maynes, Andrew John 12 May 2022 (has links)
The targeted design of new catalyst materials can only be accomplished once a fundamental understanding of the interactions between material surfaces and adsorbed molecules is developed. In situ infrared spectroscopy and mass spectrometry methods were employed to probe interactions at the gas-surface interface of oxide-supported metal nanoparticle materials. High vacuum conditions allowed for systematic investigations to describe detailed reaction mechanisms. Specifically, variable temperature infrared spectroscopy was utilized to uncover the binding energetics of CO to the oxide surface of TiO2-based materials. As binding energetics are related to the electronic structure of the adsorption site, differences in evaluated binding enthalpies are hypothesized to probe electronic metal-support interactions that describe charge transfer between the supported metal nanoparticles and TiO2. Cu/TiO2 aerogels were identified as a candidate for more in-depth studies. Flow reactor methods in combination with the surface-based infrared spectroscopy were utilized to elucidate the CO oxidation reaction mechanism over Cu/TiO2 aerogels. Bridging oxygen atoms on TiO2 regions of the material were identified as the active site for catalysis in a Cu-assisted Mars-van Krevelen lattice extraction mechanism. Methanol oxidation was then studied with similar methods to show the complete conversion to CO2 and H2O at high temperatures through the reduction of titania and formation of a formate intermediate. Higher-order carbonaceous alcohols were probed for adsorption and reactivity on Cu/TiO2 aerogels and were observed to follow a similar reaction pathway. The higher-order alcohols, however, were shown to undergo a partial oxidation pathway in the absence of gaseous O2 that is hypothesized to originate from enhanced binding to Cu sites. The decomposition of the chemical warfare agent simulant dimethyl chlorophosphate was also investigated. A hydrolysis pathway to form the significantly less toxic molecule CH3Cl was observed, highlighting the unique promotional effects and chemistry on Cu/TiO2 aerogels. The results presented exemplify both the influence of electronic metal-support interactions on catalysis and the versatile reactivity of Cu/TiO2 aerogels. / Doctor of Philosophy / Interactions between small gaseous molecules and material surfaces have very important implications for applications regarding the environment, industry, and military/public safety. The mechanisms in which gases interact with a solid surface can determine how the material can be functionally used as catalysts. Scientists and engineers start to build a fundamental understanding of what makes a catalyst successful for different applications by understanding the location and strength of interactions. A catalyst's surface acts to lower activation barriers and provide low-energy pathways for interacting molecules to chemically change, by breaking bonds for molecular decomposition and/or forming new bonds. The vibrations of chemical bonds that break and form on surfaces are probed with infrared spectroscopy at the gas-surface interface to study molecular adsorption and reactivity. In addition, a flow cell reactor is used to characterize reaction progress and identify products in real-time. A class of reactive nanoparticulate materials is utilized as a model system on which to study various chemical reactions for important applications including small molecule oxidation for industrial detoxification and clean energy applications, as well as the decomposition of chemical warfare agents. Reaction mechanisms for the oxidation of carbon monoxide and alcohols were elucidated through the utilization of the methods described above. In addition, the decomposition of a chemical warfare agent simulant is characterized. The discoveries and understanding of important chemical properties presented in this dissertation will aid in the synthesis of effective next-generation catalyst materials.
43

Intrinsic and Extrinsic Catalysis in Zirconium-based Metal-Organic Frameworks

Gibbons, Bradley James 31 May 2022 (has links)
Metal-organic frameworks (MOFs) are a class of hybrid materials that offer a promising platform for a range of catalytic reactions. Due to their complex structure, MOFs offer unique opportunities to serve as novel catalysts, or as host to improve the properties of previously studied species. However, while other catalytic approaches have been studied for many decades, the recency of their discovery means that significant work is still needed to develop MOFs as a viable option for large scale application. Herein, we aimed to advance the field of MOFs as both novel catalysts, and as host platforms for other catalytic species. To this end, we studied synthetic pathways to produce favorable MOF properties such as higher porosity and active site concentration through introduction of defects and macromorphological control, as well as utilization of molecular catalysts imbedded in the MOF structure for multicomponent, light driven reactivity. Chapter 1 introduces the history MOFs and the pursuit of the stable structures commonly associated with MOF chemistry. The synthesis process for zirconium-based MOFs will be discussed, with specific attention given to the modulated synthesis process which can harnessed to change MOF properties and improve catalysis. Two specific reactions will be introduced which serve as a basis for study in this work. First, the hydrolysis of organophosphate nerve agents by MOFs acting as novel catalysts will be introduced. The mechanism of reaction, as well as previous work in this field will be discussed. Finally, water oxidation as part of artificial photosynthesis through incorporated molecular catalysts will be introduced. Chapter 2 presents a modulator screening study on a zirconium-based MOF, UiO-66. One of the most commonly studied MOFs, UiO-66 provides an excellent platform for synthetic modulation. Particle size and defect level were measured of 26 synthetic variations and synthetic conditions were found to isolate changes in defect level and particle size, which typically change coincident with each other. Hydrolysis of the organophosphate compound dimethyl 4-nitrophenylphosphate (DMNP) was used to study the impact of particle size and defect level on reactivity. The reaction was found to be surface limited, even at high levels of missing linker defects. In Chapter 3, the macromorphology of three zirconium-based MOFs were tuned through synthesis modification. MOF powders and xerogels were prepared and characterized to highlight the desirable properties obtained through the gelation process. The materials were compared in the hydrolysis of DMNP and significant enhancement was observed for UiO-66 and NU-1000 xerogels. This was largely attributed to the introduction of mesoporosity and nanocrystalline particle sizes, which significantly increase the number of reactive sites easily accessible for catalysis. In Chapter 4 the authors examine MOFs as a host for molecular catalysts for use in photoelectrochemical water oxidation. A ruthenium-based catalyst [Ru(tpy)(dcbpy)]2+ was incorporated into UiO-67 through a mixed linker synthesis and grown on a WO3 substrate (Ru-UiO-67/WO3). Previous work from our group demonstrated Ru-UiO-67 retained the catalytic activity as the molecular species, while improving the recyclability of the material. In this work, addition of WO3 as a light harvester allowed for the reaction to be driven at a photoelectrochemical underpotential, a first for MOF-based water oxidation. Finally, Chapter 5 offers a perspective of the field of MOF-based artificial photosynthesis. Particular attention is given to issues of diffusion, selectivity, stability, and moving towards integration of multiple components rather than the study of half-reactions. / Doctor of Philosophy / Catalysts are a key component of chemistry that has a major impact on everyday life. From biological examples to industrial settings, catalysts are used to facilitate chemical conversions to new products and compounds. Because of the high demand, development of new catalysts with improved reactivity is a significant scientific challenge. A new class of materials known as metal-organic frameworks (MOFs) have been recently shown to acts as new catalysts or improve the properties of existing catalysts. Herein, we discuss the use of MOFs as catalysts for both development of new catalysts and improving known species. MOF-based catalysts have been used in a range of reactions from destruction of toxic chemical weapons to the production of renewable energy through artificial photosynthesis. This work is intended to highlight the potential for MOF-based catalysts and the next steps to further realize their potential.
44

Fundamental Investigations of Hazardous Gas Uptake and Binding in Metal-Organic Frameworks and Polyurethane Films

Grissom, Tyler Glenn 19 June 2019 (has links)
The advancements of chemists, engineers, and material scientists has yielded an enormous and diverse library of high-performance materials with varying chemical and physical properties that can be used in a wide array of applications. A molecular-level understanding of the nature of gas–surface interactions is critical to the development of next generation materials for applications such as gas storage and separation, chemical sensing, catalysis, energy conversion, and protective coatings. Quartz crystal microbalance (QCM) and in situ infrared (IR) spectroscopic techniques were employed to probe how topological features of a material as well as structural differences of the analytes affect gas sorption. Detailed studies of the interactions of three categories of molecules: aromatic hydrocarbons, triatomic ambient gases, and chemical warfare agents, with metal-organic frameworks (MOFs) and polyurethane coatings were conducted to build structure–property relationships for the nature and energetics of gas sorption within each material. Differences in the molecular structure of the guest compounds were found to greatly influence how, and to what extent each molecule interacts with the MOF or polyurethane film. Specifically, IR studies revealed that transport of aromatic compounds within the zirconium-based MOF, UiO-66 was limited by steric restrictions as molecules passed through small triangular apertures within the pore environment of the MOF. In contrast, the smaller triatomic molecules, CO2, SO2, and NO2, were able to pass freely through the MOF apertures and instead reversibly adsorbed inside the MOF cavities. Specifically, SO2 and NO2 were observed to preferentially bind to undercoordinated zirconium sites located on the MOF nodes. In addition, uptake of CO2, SO2, and NO2 was also aided by dispersion forces within the confined pore environments and by hydrogen bond formation with μ3 OH groups of the MOFs. Dimethyl chlorophosphate (DMCP), a nerve agent simulant that contains several electronegative moieties, was also found to strongly adsorb to undercoordinated zirconium; however, unlike in the aromatic and triatomic molecule systems, DMCP remained permanently bound to the MOFs, even at high temperatures. Finally, QCM studies of mustard gas simulant uptake into polyurethane films of varying hard:soft segment compositions revealed that dipole-dipole and dipole-induced dipole interactions were responsible for favorable absorption conditions. Furthermore, the ratio of hard and soft segment components of the polyurethane had a minor impact on simulant adsorption. Higher hard-segment content resulted in a more crystalline film that reduced simulant uptake, whereas the rubbery, high soft segment polyurethane allowed for greater vapor absorption. Ultimately, molecular-level insight into how the chemical identity of a guest molecule impacts the mechanism and energetics of vapor sorption into both MOFs and polymeric films can be extended to other relevant systems and may help identify how specific characteristics of each material, such as size, shape, and chemical functionality impact their potential use in targeted applications. / Doctor of Philosophy / The nature in which specific gases interact with materials will largely dictate how the material can be utilized. By understanding where and how strongly gas molecules interact with a material, scientists and engineers can rationally design new and improved systems for targeted applications. In the research described in this thesis, we examined how the chemical structure of three different groups of compounds, which have relevance in many industrial, environmental, and defense-related applications, affected the type and strength of interaction between the gas and material of interest. From these studies, we have identified how key properties and features within the examined materials such as size, shape, and chemical composition, lead to significant differences in how vapor molecules interacted with the materials. For example, benzene, toluene, and xylene, which are incredibly important chemicals in industry, were found to be restricted by narrow passageways as they moved through materials with small pores. In contrast, small gases present in the environment from combustion exhaust such as CO₂, SO₂, and NO₂ were able to freely traverse through the passageways, and instead weakly interacted with specific chemical groups inside the cavities of the material. On the same material however, a third class of compounds, organophosphorus-containing chemical warfare agent mimics, irreversibly reacted with chemical groups of the surface, and remained bound even after exposure to high temperatures. Ultimately, the work presented in this thesis is aimed at providing key fundamental insights about specific classes of materials on how, and how strongly they interact with targeted hazardous vapors, which can be utilized by synthetic chemists to design next generation materials.
45

The Reactivity of Chemical Warfare Agent Simulants on Carbamate Functionalized Monolayers and Ordered Silsesquioxane Films

McPherson, Melinda Kay 13 April 2005 (has links)
The reactivity of chemical warfare agents (CWAs) and CWA simulants on organic and oxide surfaces is not currently well understood, but is of substantial importance to the development of effective sensors, filters and sorbent materials. Polyurethane coatings are used by the armed forces as chemical agent resistive paints to limit the uptake of CWAs on surfaces, while the use of metal oxides has been explored for decontamination and protection purposes. To better understand the chemical nature of the interactions of organophosphonate simulants with these surfaces, an ultra-high vacuum environment was used to isolate the target interactions from environmental gaseous interferences. The use of highly-characterized surfaces, coupled with molecular beam and dosing capabilities, allows for the elucidation of adsorption, desorption, and reaction mechanisms of CWA simulants on a variety of materials. Model urethane-containing organic coatings were designed and applied toward the creation of well-ordered thin films containing carbamate linkages. In addition, novel trisilanolphenyl-polyhedral oligomeric silsesquioxane (POSS) molecules were used to create Langmuir-Blodgett films containing reactive silanol groups that have potential use as sensors and coatings. The uptake and reactivity of organophosphonates and chlorophosphates on these surfaces is the focus of this study. Surfaces were characterized before and after exposure to the phosphates using a number of surface sensitive techniques including: contact angle goniometry, reflection-absorption infrared spectroscopy (RAIRS), X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD) measurements. In conjunction with surface probes, uptake coefficients were monitored according to the King and Wells direct reflection technique. The integration of these analytical techniques provides insight and direction towards the design of more effective chemical agent resistant coatings and aids in the development of more functional strategies for chemical warfare agent decontamination and sensing. / Ph. D.
46

Reflection Absorption Infrared Spectroscopic Studies of Surface Chemistry Relevant to Chemical and Biological Warfare Agent Defense

Uzarski, Joshua Robert 26 February 2009 (has links)
Reflection absorption infrared spectroscopy was used as the primary analysis technique to study the interfacial chemistry of surfaces relevant to chemical and biological warfare agent defense. Many strategies utilized by the military to detect and decompose chemical and biological warfare agents involve their interaction with surfaces. However, much of the chemistry that occurs at the interface between the agents and surfaces of interest remains unknown. The surface chemistry plays an important role in efficacy of both detection and decontamination technology, and by obtaining a deeper understanding of that chemistry, researchers might be able to develop more sensitive detection devices and more effective decontamination strategies. Our efforts have focused on three different areas of surface chemistry relevant to chemical and biological warfare agent defense: 1) The development of a surface synthesis strategy to create and control the structure of antibacterial self-assembled monolayers (SAMs). Our work demonstrated a successful strategy for creating SAMs that contain long-chain quaternary ammonium groups, which were synthesized and subsequently characterized using RAIRS and X-ray photoelectron spectroscopy (XPS). 2) The determination of the surface conformation, orientation, and relative surface density of immobilized antimicrobial peptides. Our results revealed that the peptides consisted of tilted (50-60°), α-helices on the surface, regardless of solution conditions. 3) The design and construction of a new ultrahigh vacuum surface science instrument that allows for the study of gas-surface reactions with up to three gases simultaneously. 4) The study of the adsorption of chemical warfare agent simulants to silica nanoparticulate films. Our work demonstrated that the adsorbate structure was dependent on the number of hydrogen-bonding groups, and the adsorption consists of a pressure-dependent two part mechanism. The results presented here will help increase the understanding of the surface chemistry of three interfaces relevant to chemical and biological defense. Future researchers may apply the new information to develop more effective detection and decontamination strategies for chemical and biological warfare agents. / Ph. D.
47

How to optimize joint theater ballistic missile defense

Diehl, Douglas D. 03 1900 (has links)
Approved for public release, distribution is unlimited / Many potential adversaries seek, or already have theater ballistic missiles capable of threatening targets of interest to the United States. The U.S. Missile Defense Agency and armed forces are developing and fielding missile interceptors carried by many different platforms, including ships, aircraft, and ground units. Given some exigent threat, the U.S. must decide where to position defensive platforms and how they should engage potential belligerent missile attacks. To plan such defenses, the Navy uses its Area Air Defense Commander (AADC) system afloat and ashore, the Air Force has its Theater Battle Management Core Systems (TBMCS) used in air operations centers, and the Missile Defense Agency uses the Commander's Analysis and Planning Simulation (CAPS). AADC uses a server farm to exhaustively enumerate potential enemy launch points, missiles, threatened targets, and interceptor platform positions. TBMCS automates a heuristic cookie-cutter overlay of potential launch fans by defensive interceptor envelopes. Given a complete missile attack plan and a responding defense, CAPS assesses the engagement geometry and resulting coverage against manually prepared attack scenarios and defense designs. We express the enemy courses of action as a mathematical optimization to maximize expected damage, and then show how to optimize our defensive interceptor pre-positioning to minimize the maximum achievable expected damage. We can evaluate exchanges where each of our defending platform locations and interceptor commitments are hidden from, or known in advance by the attacker. Using a laptop computer we can produce a provably optimal defensive plan in minutes. / Lieutenant, United States Navy
48

Preparation And Surface Modification Of Noble Metal Nanoparticles With Tunable Optical Properties For Sers Applications

Kaya, Murat 01 April 2011 (has links) (PDF)
Metal nanostructures exhibit a wide variety of interesting physical and chemical properties, which can be tailored by altering their size, morphology, composition, and environment. Gold and silver nanostructures have received considerable attention for many decades because of their widespread use in applications such as catalysis, photonics, electronics, optoelectronics, information storage, chemical and biological sensing, surface plasmon resonance and surface-enhanced Raman scattering (SERS) detection. This thesis is composed of three main parts about the synthesis, characterization and SERS applications of shape-controlled and surface modified noble metal nanoparticles. The first part is related to a simple synthesis of shape controlled solid gold, hollow gold, silver, gold-silver core-shell, hollow gold-silver double-shell nanoparticles by applying aqueous solution chemistry. Nanoparticles obtained were used for SERS detection of dye molecules like brilliant cresyl blue (BCB) and crystal violet (CV) in aqueous system. v The second part involves the synthesis of surface modified silver nanoparticles for the detection of dopamine (DA) molecules. Determination of a dopamine molecule attached to a iron-nitrilotriaceticacid modified silver (Ag-Fe(NTA)) nanoparticles by using surface-enhanced resonance Raman scattering (SERRS) was achieved. The Ag-Fe (NTA) substrate provided reproducibility and excellent sensitivity. Experimental results showed that DA was detected quickly and accurately without any pretreatment in nM levels with excellent discrimination against ascorbic acid (AA) (which was among the lowest value reported in direct SERS detection of DA). In the third part, a lanthanide series ion (Eu3+) containing silver nanoparticle was prepared for constructing a molecular recognition SERS substrate for the first time. The procedure reported herein, provides a simple way of achieving reproducible and sensitive SERS spectroscopy for organophosphates (OPP) detection. The sensing of the target species was confirmed by the appearance of an intense SERS signal of the methyl phosphonic acid (MPA), a model compound for nonvolatile organophosphate nerve agents, which bound to the surface of the Ag-Eu3+ nanostructure. The simplicity and low cost of the overall process makes this procedure a potential candidate for analytical control processes of nerve agents.
49

Application of hydrogen bond acidic polycarbosilane polymers and solid phase microextraction for the collection of nerve agent simulant /

Boglarski, Stephen L January 2006 (has links) (PDF)
Thesis (M.S.P.H.)--Uniformed Services University of the Health Sciences, 2006 / Typescript (photocopy)
50

Testování chemických zbraní na lidech / Chemical weapons experiments on humans

MLEJNEK, Miroslav January 2010 (has links)
Chemical weapons are justly considered by the human society as the oldest type of weapons of mass destruction. Unfortunately the same human society has continued to apply and further develop the ancient principles of use of combat chemical substances. The current world, despite all the humanistic efforts to terminate the history of this type of weapons, continues to be physically threatened by their abuse. I must say that studies of the history of chemical weapons are very demanding and comprehensive. The whole process of historic development of these combat means is interconnected by multiple relations and circumstances and unfortunately has been the source of a lot of inconceivable human suffering. That is why I decided to take the courage and thread the path leading to a look back at the past, for I believe that such a retrospective not only reveals stories that are already buried in the distant past and are not needed any more, but also leads to understanding the present, learning a lesson from past mistakes and acquiring a humble approach to life. On the basis of studies of the many available resources I tried to submit in my diploma thesis a complex summary of current as well as historic knowledge of combat chemical substances, their research and testing on humans. While the issue of chemical weapons and wars as such is paid a lot of attention, the issue of chemical weapon testing on people has still been a marginal theme. The abovementioned facts inspired this thesis and I believe that my diploma theses might be beneficial for its readers. My greatest desire and aim was to present to the readers the historic path of application and the related research and testing of chemical weapons. I hope I have processed the theme to be better understandable to the reader, both professional and lay. I tried to proceed systematically and make my thesis interesting to enrich not only me but also its readers.

Page generated in 0.0729 seconds