Spelling suggestions: "subject:"chemically reacting"" "subject:"hemically reacting""
1 |
Finite Volume Solutions Of 1d Euler Equations For High Speed Flows With Finite-rate ChemistryErdem, Birsen 01 December 2003 (has links) (PDF)
In this thesis, chemically reacting flows are studied mainly for detonation problems under 1D, cylindrical and spherical symmetry conditions. The mathematical formulation of chemically reacting, inviscid, unsteady flows with species conservation equations and finite-rate chemistry is described. The Euler equations with finite-rate chemistry are discretized by Finite-Volume method and solved implicitly by using a time-spliting method. Inviscid fluxes are computed using Roe Flux Difference Splitting Model. The numerical solution is implemented in parallel using domain decomposition and PVM library routines for inter-process communication. The solution algorithm is validated first against the numerical and experimental data for a shock tube problem with and without chemical reactions and for a cylindrical and spherical propagation of a shock wave. 1D, cylindrically and spherically symmetric detonations of H2:O2:Ar mixture are studied next.
|
2 |
Unsteady hydromagnetic chemically reacting mixed convection MHD flow over a permeable stretching sheet embedded in a porous medium with thermal radiation and heat source/sinkMachaba, Mashudu Innocent 18 May 2018 (has links)
MSc (Mathematics) / Department of Mathematics and Applied Mathematics / The unsteady hydromagnetic chemically reacting mixed convection MHD
ow over a
permeable stretching sheet embedded in a porous medium with thermal radiation and
heat source/sink is investigated numerically. The original partial di erential equations
are converted into ordinary di erential equations by using similarity transformation. The
governing non-linear partial di erential equations of Momentum, Energy, and Concentration
are considered in this study. The e ects of various physical parameters on the
velocity, temperature, and species concentration have been discussed. The parameters
include the Prandtl number (Pr), Magnetic parameter (M), the Schmidt number (Sc),
Unsteady parameter (A), buoyancy forces ratio parameter (N), Chemical reaction (K),
Radiation parameter (Nr), Eckert number (Ec), local heat source/sink parameter (Q)
and buoyancy parameter due to temperature ( ). The coe cient of Skin friction and
Heat transfer are investigated. The coupled non-linear partial di erential equations governing
the
ow eld have been solved numerically using the Spectral Relaxation Method
(SRM). The results that are obtained in this study are then presented in tabular forms
and on graphs and the observations are discussed. / NRF
|
Page generated in 0.0946 seconds