• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mathematical Analysis of Forced Convective Flow Due to Stretching Sheet and Instabilities of Natural Convective Flow

Metri, Prashant G January 2017 (has links)
The investigations presented in the thesis are theoretical studies of magnetohydrodynamic flows, heat and mass transfer in Newtonian/non-Newtonian cooling liquids, due to horizontal/vertical stretching sheet. The theoretical studies include the effect of magnetic field, uniform and non-uniform heat source/sink (flow and temperature dependent heat source/sink) effects. The considered problems include flow of viscous fluids in the presence of applied magnetic field and electric field with first order chemical reactions. The viscous incompressible Newtonian fluid flow in porous medium with Darcy-Forchheimmer model, electrically conducting fluid and nanofluid is studied. We introduce innovative techniques for finding solutions of highly nonlinear coupled boundary value problems such as Runge-Kutta method, Perturbation method and Differential Transform Method (DTM).   Chapter 1-2 gives a brief introduction. Chapter 3 focuses on Lie group analysis of MHD flow and heat transfer over a stretching sheet. The effects of viscous dissipation, uniform heat source/sink and MHD on heat transfer are addressed. In Chapter 4-6 we examined the laminar flow, thermocapillary flow of a nanoliquid thin film over an unsteady stretching sheet in presence of MHD and thermal Radiation in different situations. An effective medium theory (EMT) based model is used for the thermal conductivity of the nanoliquid.  Metal and metal oxide nanoparticles are considered in carboxymethyl cellulose (CMC) - water base liquid. In Chapter 7-9 we analyzed, heat and mass transfer in MHD, mixed convection, viscoelastic fluid flow, non-Darcian flow due to stretching sheet in presence of viscous dissipation, non-uniform heat source/sink and porous media have been investigated in different situations.  MHD and viscous dissipation have a significant influence on controlling of the dynamics.    In Chapter 10 the linear stability of Maxwell fluid-nanofluid flow in a saturated porous layer is examined theoretically when the walls of the porous layers are subjected to time-periodic temperature modulations. A modified Darcy-Maxwell model is used to describe the fluid motion, and the nanofluid model used includes the effects of the Brownian motion. The thermal conductivity and viscosity are considered to be dependent on the nanoparticle volume fraction. In Chapter 11 we studied MHD flow in a vertical double passage channel taking into account the presence of the first order chemical reactions. The governing equations are solved by using a regular perturbation technique valid for small values of the Brinkman number and a DTM valid for all values of the Brinkman number.
2

Unsteady hydromagnetic chemically reacting mixed convection MHD flow over a permeable stretching sheet embedded in a porous medium with thermal radiation and heat source/sink

Machaba, Mashudu Innocent 18 May 2018 (has links)
MSc (Mathematics) / Department of Mathematics and Applied Mathematics / The unsteady hydromagnetic chemically reacting mixed convection MHD ow over a permeable stretching sheet embedded in a porous medium with thermal radiation and heat source/sink is investigated numerically. The original partial di erential equations are converted into ordinary di erential equations by using similarity transformation. The governing non-linear partial di erential equations of Momentum, Energy, and Concentration are considered in this study. The e ects of various physical parameters on the velocity, temperature, and species concentration have been discussed. The parameters include the Prandtl number (Pr), Magnetic parameter (M), the Schmidt number (Sc), Unsteady parameter (A), buoyancy forces ratio parameter (N), Chemical reaction (K), Radiation parameter (Nr), Eckert number (Ec), local heat source/sink parameter (Q) and buoyancy parameter due to temperature ( ). The coe cient of Skin friction and Heat transfer are investigated. The coupled non-linear partial di erential equations governing the ow eld have been solved numerically using the Spectral Relaxation Method (SRM). The results that are obtained in this study are then presented in tabular forms and on graphs and the observations are discussed. / NRF

Page generated in 0.0591 seconds