Spelling suggestions: "subject:"chloride migration"" "subject:"dichloride migration""
1 |
Durability of fire exposed concrete : Experimental Studies Focusing on Stiffness & Transport PropertiesAlbrektsson, Joakim January 2015 (has links)
Road and rail tunnels are important parts of the modern infrastructure. High strength concrete (HSC) is commonly used for tunnels and other civil engineering structures, since it allows high load carrying capacity and long service life. In general, Swedish road and rail tunnels should be designed for a service life of 120 years. However, HSC has shown to be sensitive to severe fires in the moist tunnel environment, i.e., fire spalling may occur. Extensive research shows that addition of polypropylene (PP) fibres in the fresh concrete mix significantly reduces the risk of fire spalling. The durability of a concrete structure is mainly governed by the transport properties. Further, experimental studies aimed at understanding the protective mechanism of PP fibres indicate that fluid transport increases in connection with the melting temperature of such fibres. This might reduce the durability of fire exposed concrete with addition of PP fibres. This study aims to investigate whether the use of PP fibres has any significant effect on the durability of moderate fire exposed concrete structures. The experimental study focused on transport properties related to durability and stiffness reduction of fire exposed civil engineering concrete with and without addition of PP fibres. The study consists of three parts; (i) unilateral fire exposure in accordance with the standard time-temperature curve (Std) and a slow heating curve (SH), (ii) uniformly heating of non-restrained samples to 250oC, and (iii) moderate unilateral fire exposure, 350oC, of restrained samples. Changes in material properties caused by the fire exposure were studied by means of ultrasonic pulse velocity, full field-strain measurements during uniaxial compression core tests, polarization and fluorescence microscopy (PFM), water absorption and non-steady state chloride migration. The study shows that fire exposure influences different properties of importance for load carrying capacity and durability. To get a clear image of the fire damage one has to combine different test methods during damage assessments. Transport properties of concrete both with and without addition of PP fibres were considerably affected even at moderate fire exposure. Hence, the service life might be reduced. All series with addition of PP fibres exhibited higher water absorption compared to the series without PP fibres. The practical importance of this might, however, be small since also the water absorption of concrete without PP fibres was considerably affected for the fire scenarios considered in this study. Behind the fire exposed surface, i.e., between 30 and 60 mm, no change in water absorption was observed for concrete without PP fibres. However, higher water absorption of the series with addition of PP fibres was observed. Indicative fire tests aimed to evaluate the resistance to fire spalling during a subsequent severe fire was also conducted. The concretes with addition of PP fibres showed no signs of fire spalling, while progressive spalling was observed for the concrete without PP fibres. / <p>QC 20150603</p>
|
2 |
Multi-phase modelling of multi-species ionic migration in concreteLiu, Qingfeng January 2014 (has links)
Chloride-induced corrosion of reinforcing steel in concrete is a worldwide problem. In order to predict how chlorides penetrate in concrete and how other ionic species in con-crete pore solution affect the penetration of chlorides, this thesis presents a numerical study on multi-phase modelling of ionic transport in concrete dominated by migration process. There are many advantages in rapid chloride migration test (RCM) method and numeri-cal approach. However, most of models in the literature predicting chloride diffusivity in concrete are diffusion models, which not consider the action of externally applied electric field. In view of this, the specific aim of this thesis is to develop a rational nu-merical migration model to simulate chloride migration tests. By using this model, the diffusion coefficient of chlorides in concrete will be efficiently predicted. Furthermore, other mechanisms of ionic transportation in composite materials can be scientifically in-vestigated in the meantime. In most existing work, researchers tend to use the assumption of electro-neutrality con-dition, which ensures that no external charge can be imported (Bockris and Reddy, 1998), to determine the electrostatic potential within concrete as well as considering a 1-D problem with only one phase structure and single species (i.e. the chlorides) for pre-dicting the ionic migration. In contrast, this thesis presents a number of sets of multi-phase migration models in more than one dimension and uses the Poisson’s equation for controlling the multi-species interactions. By solving both mass conservation and Pois-son’s equations, the distribution profiles of each ionic species and electrostatic potential at any required time are successfully obtained. Some significant factors, i.e. the influ-ence of dimensions, aggregates, interfacial transition zones (ITZs), cracks and binding effect have also been discussed in detail. The results reveal a series of important features which may not be seen from existing numerical models. For quantitative study, this thesis also provides the prediction method of chloride diffu-sivity not only by the traditional stationary diffusion models but also by the migration models presented in the thesis. The obtained results are compared with three proven analytical models, i.e., Maxwell’s model (Dormieux and Lemarchand, 2000), Brug-geman’s equation (Bruggeman’s, 1935) and the lower bound of the effective diffusion coefficient proposed by Li et al. (2012) as well as validated against experimental data sets of an accelerated chloride migration test (ACMT) brought by Yang and Su (2002).
|
Page generated in 0.0913 seconds