• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interactions of food proteins with plant phenolics – modulation of structural, techno- and bio-functional properties of proteins

Mostafa Kamel Abdelfatah, Ali January 2013 (has links)
The phenolic compounds as food components represent the largest group of secondary metabolites in plant foods. The phenolic compounds, e.g. chlorogenic acid (CQA), are susceptible to oxidation by enzymes specially, polyphenol oxidase (PPO) and at alkaline conditions. Both enzymatic and non-enzymatic oxidations occur in the presence of oxygen and produce quinone, which normally further react with other quinone to produce colored compounds (dimers), as well as is capable of undergoing a nucleophilic addition to proteins. The interactions of proteins with the phenolic compounds have received considerable attention in the recent years where, plant phenolic compounds have drawn increasing attention due to their antioxidant properties and their noticeable effects in the prevention of various oxidative stress associated diseases. Green coffee beans are one of the richest sources of chlorogenic acids. Therefore, a green coffee extract would provide an eligible food relevant source for phenolic compounds for modification of proteins. The interaction between 5-CQA and amino acid lysine showed decrease in both free CQA and amino acid groups and only a slight effect on the antioxidative capacity depending on the reaction time was found. Furthermore, this interaction showed a large number of intermediary substances of low intensities. The reaction of lysine with 5-CQA in a model system initially leads to formation of 3-CQA and 4-CQA (both are isomers of 5-CQA), oxidation giving rise to the formation of a dimer which subsequently forms an adduct with lysine to finally result in a benzacridine derivative as reported and confirmed with the aid of HPLC coupled with ESI-MSn. The benzacridine derivative containing a trihydroxy structural element, was found to be yellow, being very reactive with oxygen yielding semiquinone and quinone type of products with characteristic green colors. Finally, the optimal conditions for this interaction as assessed by both the loss of CQA and free amino groups of lysine can be given at pH 7 and 25°C, the interaction increasing with incubation time and depending also on the amount of tyrosinase present. Green coffee bean has a higher diversity and content of phenolics, where besides the CQA isomers and their esters, other conjugates like feruloylquinic acids were also identified, thus documenting differences in phenolic profiles for the two coffee types (Coffea arabica and Coffea robusta). Coffee proteins are modified by interactions with phenolic compounds during the extraction, where those from C. arabica are more susceptible to these interactions compared to C. robusta, and the polyphenol oxidase activity seems to be a crucial factor for the formation of these addition products. Moreover, In-gel digestion combined with MALDI-TOF-MS revealed that the most reactive and susceptible protein fractions to covalent reactions are the α-chains of the 11S storage protein. Thus, based on these results and those supplied by other research groups, a tentative list of possible adduct structures was derived. The diversity of the different CQA derivatives present in green coffee beans complicates the series of reactions occurring, providing a broad palette of reaction products. These interactions influence the properties of protein, where they exposed changes in the solubility and hydrophobicity of proteins compared to faba bean proteins (as control). Modification of milk whey protein products (primarily b-lactoglobulin) with coffee specific phenolics and commercial CQA under enzymatic and alkaline conditions seems to be affecting their chemical, structural and functional properties, where both modifications led to reduced free amino-,thiol groups and tryptophan content. We propose that the disulfide-thiol exchange in the C-terminus of b-lactoglobulin may be initiated by the redox conditions provided in the presence of CQA. The protein structure b-lactoglobulin thereupon becomes more disordered as simulated by molecular dynamic calculation. This unfolding process may additionally be supported by the reaction of the CQA at the proposed sites of modification of -amino groups of lysine (K77, K91, K138, K47) and the thiol group of cysteine (C121). These covalent modifications also decreased the solubility and hydrophobicity of b-lactoglobulin, moreover they provide modified protein samples with a high antioxidative power, thermally more stable as reflected by a higher Td, require less amount of energy to unfold and when emulsified with lutein esters, exhibit their higher stability against UV light. The MALDI-TOF and SDS-PAGE results revealed that proteins treated at alkaline conditions were more strongly modified than those treated under enzymatic conditions. Finally, the results showed a slight change in emulsifying properties of modified proteins. / Für die Verbesserung von Nahrungsmitteleigenschaften können Modifikationen an verschiedenen Inhaltsstoffen vorgenommen werden. Beispielsweise werden bereits Proteine miteinander verknüpft und bilden sogenannte „Crosslinks“ oder vernetzte Biomoleküle. Diese werden für die Herstellung fester, viskoelastischer Produkte, die zum Verdicken als auch zum Stabilisieren von Emulsionen oder Schäumen eingesetzt werden, genutzt. Da die Verbraucher sich Zunehmens mit gesundheitsfördernden Lebensmitteln befassen, ist das Einbringen von gesundheitsfördernden Inhaltsstoffen wie z.B. phenolische Verbindungen, immer mehr in den Fokus der Forschung gerückt. Demnach ist das wissenschaftliche Bestreben phenolische Verbindungen in die Vernetzung von Proteinen mit einzubeziehen und deren positive Wirkungen (antioxidativ) auszunutzen, vorteilhaft. Als Phenole werden Verbindungen bezeichnet, die eine oder mehrere Hydroxygruppen am Benzolring aufweisen. Phenole liegen in der Enolform vor, da diese, bedingt durch den Erhalt des aromatischen Benzolringes, energetisch begünstigt ist. Kaffeesäure ist eine Hydroxyzimtsäure und in Kaffeebohnen zu finden. Der am häufigsten anzutreffende Ester besteht aus Kaffee- und Chinasäure. Der einfachste Vertreter ist die Chlorogensäure (5-Caffeoylchinasäure, 5-CQA), die in vielen Pflanzenteilen enthalten ist. Chlorogensäure und ihre Derivate besitzen ebenfalls antioxidative Eigenschaften. Zusätzlich wirken sie auf Enzyme, die an entzündlichen- oder allergischen Reaktion teilnehmen, inhibierend. Während Verarbeitungs- und Lagerungsprozessen können phenolische Komponenten pflanzlicher Lebensmittel mit den Aminosäuren der Proteine in Lebensmitteln reagieren. Solche Reaktionen können die physikalisch-chemischen Eigenschaften von Proteinen verändern und deren ernährungsphysiologische Wertigkeit vermindern. Proteine weisen verschiedene reaktive Seitengruppen (Sulfhydryl-, Hydroxyl-, Aminogruppen) auf, mit denen sie über kovalente und nicht-kovalente Wechselwirkungen mit Phenolen Verbindungen eingehen können. Zu den nicht-kovalenten Verbindungen gehören u. a. Wasserstoffbrückenbindungen, hydrophobe Wechselwirkungen und Ionenbindungen. Phenole (z.B. Chlorogensäuren) können bei Anwesenheit von Sauerstoff enzymatisch bzw. nichtenzymatisch oxidiert werden. Die Reaktionsprodukte (Chinone) bilden anschließend mit reaktiven Thiol- bzw. Aminogruppen von Proteinen Addukte. Die Erfassung dieser verschiedenen Facetten von Interaktionen stellt somit die primäre Forschungsaufgabe im Rahmen dieser Arbeit. Die primäre Aufgabe der vorliegenden Arbeit besteht demzufolge in der Etablierung der Analysen- und der Charakterisierungsmöglichkeiten solcher Wechselwirkungen (Bindung) pflanzlicher Verbindungen bzw. deren Reaktionsprodukten mit Proteinen u.a. über massenspektrometrische Methoden. Da die Wechselwirkung mit Proteinen auch zu Veränderungen der Proteinstruktur führt, können deren funktionelle Eigenschaften auch verändert sein. Dies soll anhand der Messung von isolierten Proteinen die an der Wechselwirkung beteiligt sind, nachgewiesen werden. Anschließend sollen über Docking-Untersuchungen die entsprechenden Bindungsstellen näher charakterisiert werden. Durch die vorliegenden Ergebnisse wurden mögliche Reaktionen von phenolischen Verbindungen mit Proteinen, näher charakterisiert. Es wurde festgestellt, dass die Apfelsorte Braeburn über die höchste PPO- Enzymaktivität beim gleichzeitigen niedrigen CQA Gehalt im Vergleich zu den anderen untersuchten Sorten verfügt. Die PPO/Tyrosinase modulierte Reaktionen zwischen CQA und Lysine wurden in Abhängigkeit der vorherrschenden Bedingungen optimiert und die Reaktionsprodukte analysiert. In dem zweiten Teil wurden solche Reaktionsmöglichkeiten in den Grünen Kaffeebohnen lokalisierte und modelliert. Dazu wurden die sortenabhängige CQA-Zusammensetzung ermittelt und die möglichen Reaktionen mit den Hauptspeicherproteinen des Kaffees dargestellt. Im letzten Teil wurden dann diese Reaktionen mit Molkenproteinen simuliert und Einflüsse auf die Struktur und die funktionellen Eigenschaften erfasst. Die Ergebnisse belegen eine umfangreiche und sehr heterogene Adduktbildung mit den Aminoseitenketten des Lysins und Cysteins. Ein Katalog der unterschiedlichen Reaktionsprodukte wurde erstellt und am Protein modelliert. Die entsprechende Veränderung an die Proteinstruktur wurde experimentell belegt und der Einfluss wurde in den technofunktionelle Eigenschaften (wie die Löslichkeit, Emulgierbarkeit usw.) wiederspiegelt. Ein Anstieg des antioxidativen Potentials der Proteine wurde erreicht und diese so modifizierten Proteine wurden weiter zur Stabilisierung und Produktentwicklung getestet. Die ersten Ergebnisse eröffnen Nutzungsmöglichkeiten der modifizierten Proteine zur Verkapselung von bioaktiven Sekundären Pflanzenstoffen.
2

Inhibition of zinc-dependent peptidases by Maillard reaction products

Missagia de Marco, Leticia 12 March 2015 (has links) (PDF)
The Maillard reaction is a network of different non-enzymatic reactions between carbonyl groups of reducing sugars and amino groups from amino acids, peptides, or proteins, which progresses in three major stages and originates a very heterogeneous mixture of reaction products. It is also known as non-enzymatic browning, due to the brown macromolecular pigments formed in the final stage of the reaction. The chemistry underlying the Maillard reaction is complex. It encloses not only one reaction pathway, but a whole network of various transformations. As virtually all foods contain both proteins and carbohydrates, Maillard reaction products are present in the daily diet in considerable amounts. The endogenous formation of Maillard reaction products, especially related to ageing and diabetes, aroused intense discussions about the health consequences of the “glycation”, the term that describes the in vivo reaction corresponding to the Maillard reaction in foods. Melanoidins are the final brown products of the Maillard reaction. They are responsible for the color formed during the heat processing of foods like coffee, bread, malt, and beef. Melanoidins are high molecular weight polydisperse polymers containing nitrogen. Their structure is largely unknown. Coffee melanoidins, which are object of the present study, contain thermally transformed polysaccharides, proteins, and phenolic compounds. Since the mechanisms involved on the formation of these macromolecules, and the chemical transformations which take place during the heat treatment are not completely elucidated, key structural features were analyzed. Especially the incorporation of chlorogenic acids in the melanoidin skeleton was object of attention of the present work. Another major aim of this work was to investigate the influence of the Maillard reaction on the inhibitory potential of food components against zinc metalloproteases. The studied enzymes were three human matrix metalloproteases (MMP-1, -2 and -9), which are able to degrade matrix proteins and participate in many physiological processes, including tissue turnover and repair, but also constitute important targets in malignant and degenerative diseases. A microbial collagenase from Chlostridium histolyticum was chosen due to its subtract similarity to MMPs. Furthermore, Angiotensin Converting Enzyme (ACE), which plays a central role in cardiovascular pathologies such as hypertension and cardiac hypertrophy, was investigated. As a prototypical Maillard reaction product, coffee melanoidin was adopted. Due to the roast dependent inhibitory activity of the coffee melanoidin fractions against matrix metalloproteases, the functionalization caused by the non-enzymatic browning was closer investigated. Na-carboxyalkylated derivatives of a sequence of relevant peptides were synthesized, in a variation of the process-induced formation of Nε-carboxymethyllysine, a major advanced glycation end-product (AGE). The inhibitory activity against zinc metalloproteases of the sequence of selected peptides and their Na-carboxymethyl- (CM-) and Na-carboxyethyl- (CE-) derivates was investigated.
3

Inhibition of zinc-dependent peptidases by Maillard reaction products

Missagia de Marco, Leticia 09 March 2015 (has links)
The Maillard reaction is a network of different non-enzymatic reactions between carbonyl groups of reducing sugars and amino groups from amino acids, peptides, or proteins, which progresses in three major stages and originates a very heterogeneous mixture of reaction products. It is also known as non-enzymatic browning, due to the brown macromolecular pigments formed in the final stage of the reaction. The chemistry underlying the Maillard reaction is complex. It encloses not only one reaction pathway, but a whole network of various transformations. As virtually all foods contain both proteins and carbohydrates, Maillard reaction products are present in the daily diet in considerable amounts. The endogenous formation of Maillard reaction products, especially related to ageing and diabetes, aroused intense discussions about the health consequences of the “glycation”, the term that describes the in vivo reaction corresponding to the Maillard reaction in foods. Melanoidins are the final brown products of the Maillard reaction. They are responsible for the color formed during the heat processing of foods like coffee, bread, malt, and beef. Melanoidins are high molecular weight polydisperse polymers containing nitrogen. Their structure is largely unknown. Coffee melanoidins, which are object of the present study, contain thermally transformed polysaccharides, proteins, and phenolic compounds. Since the mechanisms involved on the formation of these macromolecules, and the chemical transformations which take place during the heat treatment are not completely elucidated, key structural features were analyzed. Especially the incorporation of chlorogenic acids in the melanoidin skeleton was object of attention of the present work. Another major aim of this work was to investigate the influence of the Maillard reaction on the inhibitory potential of food components against zinc metalloproteases. The studied enzymes were three human matrix metalloproteases (MMP-1, -2 and -9), which are able to degrade matrix proteins and participate in many physiological processes, including tissue turnover and repair, but also constitute important targets in malignant and degenerative diseases. A microbial collagenase from Chlostridium histolyticum was chosen due to its subtract similarity to MMPs. Furthermore, Angiotensin Converting Enzyme (ACE), which plays a central role in cardiovascular pathologies such as hypertension and cardiac hypertrophy, was investigated. As a prototypical Maillard reaction product, coffee melanoidin was adopted. Due to the roast dependent inhibitory activity of the coffee melanoidin fractions against matrix metalloproteases, the functionalization caused by the non-enzymatic browning was closer investigated. Na-carboxyalkylated derivatives of a sequence of relevant peptides were synthesized, in a variation of the process-induced formation of Nε-carboxymethyllysine, a major advanced glycation end-product (AGE). The inhibitory activity against zinc metalloproteases of the sequence of selected peptides and their Na-carboxymethyl- (CM-) and Na-carboxyethyl- (CE-) derivates was investigated.:LIST OF CONTENTS I LIST OF TABLES IV LIST OF FIGURES V LIST OF ABBREVIATIONS VII 1 INTRODUCTION 1 2 BACKGROUND 3 2.1 Maillard reaction in food 3 2.1.1 Melanoidins 8 2.2 Coffee 11 2.2.1 General aspects 11 2.2.1.1 Coffee production 12 2.2.1.2 General chemical composition 14 2.2.1.3 Coffee and health 20 2.2.2 Coffee melanoidins 24 2.2.2.1 Chemistry of coffee melanoidins 24 2.2.2.2 Properties of coffee melanoidins 29 2.3 Zinc metallopeptidases 32 2.3.1 Matrix metalloproteinases (MMPs) 33 2.3.1.1 Functions of MMPs 35 2.3.1.2 Structure of MMPs 37 2.3.1.3 Inhibition of MMPs 39 2.3.2 Clostridium histolyticum collagenase (ChC) 43 2.3.2.1 Functions of ChC 43 2.3.2.2 Structure of ChC 43 2.3.2.3 Inhibition of ChC 44 2.3.3 Agiotensin converting enzyme (ACE) 45 2.3.3.1 Functions of ACE 45 2.3.3.2 Structure of ACE 46 2.3.3.3 Inhibition of ACE 48 3 EXPERIMENTAL SECTION 50 3.1 Chemicals, materials and equipment 50 3.1.1 Chemicals 50 3.1.2 Material 52 3.1.3 Equipment 52 3.1.4 Solutions 54 3.2 Synthesis of Nα-carboxyalkylated peptides 55 3.2.1 Nα-carboxyalkylation of GP, LL, IA, GA, GL, AP, IP and IPP by reductive alkylation 55 3.2.2 Nα-carboxyalkylation of IW using sodium cyanoborohydride 56 3.3 Purification 57 3.3.1 Ion Exchange Chromatographic purification 57 3.3.1.1 Spotting test 58 3.3.2 HPLC purification of CM-IW 58 3.3.3 Overview of the synthesis and elution conditions 59 3.4 Characterization of carboxyalkylated peptides 61 3.4.1 Mass spectrometry 61 3.4.2 Elemental Analysis 61 3.4.3 Analytical characteristics of carboxyalkylated peptides 62 3.5 Preparation of coffee fractions 65 3.5.1 Roasting conditions 65 3.5.2 Fractionation of coffee samples: Isolation of coffee melanoidins 67 3.6 Structural studies 69 3.6.1 Estimation of the molecular weight 69 3.6.2 C/N ratio 70 3.6.3 Amino acid analysis 70 3.6.3.1 Acid hydrolysis 70 3.6.3.2 General amino acid analysis 70 3.6.3.3 Lysinoalanine 71 3.6.3.4 Pentosidine 72 3.6.4 Total phenols 74 3.6.5 Raman spectroscopy 74 3.7 Study on inhibition of zinc metalloproteases 75 3.7.1 Inhibition of ACE 75 3.7.1.1 General enzymatic assay 75 3.7.1.2 Quantification 78 3.7.2 Inhibition of MMP-1, -2 and -9 79 3.7.2.1 General enzymatic assay 80 3.7.2.2 Effect of zinc addition on the inhibition of MMP-1 by melanoidins 81 3.7.3 Inhibition of ChC 82 3.7.3.1 General enzymatic assay 82 3.7.3.2 Quantification 84 3.7.4 Calculation of IC50 84 4 RESULTS AND DISCUSSION 86 4.1 Coffee melanoidins 86 4.1.1 Isolation of coffee fractions 86 4.2 Inhibition of zinc-dependent peptidases by coffee fractions 89 4.2.1 Inhibition of MMPs 89 4.2.2 Inhibition of other zinc metalloproteases 98 4.2.3 General considerations 99 4.3 Structural studies on coffee melanoidins 101 4.3.1 Gel permeation chromatography 102 4.3.2 Elemental analysis: C/N ratio 113 4.3.3 Amino acid analysis 116 4.3.4 Total phenolics 120 4.3.5 Correlation between total phenols content and C/N ratio in coffee melanoidins 123 4.3.6 Raman spectroscopy 124 4.4 Derivatization of peptides 129 4.4.1 Nα-carboxyalkylation of peptides by reductive alkylation 130 4.5 Preliminary investigations on the inhibitory potential of Nα-carboxyalkyl derivatives of peptides against metalloproteases 133 4.5.1 Inhibition against ACE 134 4.5.2 Inhibition against other zinc metalloproteases 138 5 SUMMARY 141 6 REFERENCES 145 LIST OF PUBLICATIONS AND CONFERENCE CONTRIBUTIONS 168 AKNOWLEDGMENTS 169 ERKLÄRUNG 170

Page generated in 0.0474 seconds