• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

O uso de condroitinase ABC combinada com células-tronco do epitélio olfatório de coelhos em modelo de lesão medular por hemissecção dorsal em coelhos / The use of chondroitinase ABC combined with rabbit olphatory stem cells in rabbit model of spinal cord injury by dorsal hemissection

Bocabello, Renato Zonzini 10 June 2013 (has links)
Cerca de 0,005% da população mundial sofre de lesão medular. O processo regenerativo do tecido nervoso apresenta limitada capacidade para repor as células danificadas (JOHANSSON et al., 1999) e produzir inibidores de crescimento dos axônios associados com a mielina para formação de cicatriz glial (OLSON, 2002). Apesar de resultados promissores, ainda existem controversas quanto ao uso de células-tronco. A eliminação da cicatriz glial, os benefícios de sua formação em diferentes fases e a avaliação da liberação de inibidores de crescimento axonal podem ser parâmetros de análise para o tratamento medular. A enzima condroitinase ABC atua nessa lesão. Neste trabalho avaliamos a interrupção do processo de liberação de inibidores axonais da cicatriz da glia em um tempo não agudo de 7 dias da lesão, sem descartar seus benefícios na fase de formação. Nosso objetivo foi utilizar terapia celular e estabelecer um protocolo de tratamento eficaz, criando uma linha de pesquisa nos estudos da lesão medular. Foi utilizado um grupo de coelhos experimental com realização de hemissecção dorsal e instituído o uso da condroitinase ABC, por aplicação, com micro injeção a curto prazo da lesão. Foi aplicada célula-tronco mesenquimal no foco da lesão após o tratamento da cicatriz da glia com a enzima. Avaliamos por imunohistoquimica a liberação de glial fibrillary acidic protein (GFAP) e sulfato de condroitina proteoglicano (SCPg) nos tecidos após o tratamento no qual foi pretendido fechar algumas lacunas e evitar falhas já descritas, e abrir uma nova esperança no tratamento de pacientes com lesão medular. Nossos resultados ainda mostraram um entendimento superficial sobre a enzima e sua ação sobre cicatrização da glia em associação com o implante celular. Foi aberta uma nova linha de questionamento sobre os benefícios causados à regeneração medular previamente a aplicação de células-tronco. / Around 0,005% of global human population is affected by Spinal Cord Injury (SCI). The regenerative process of neural tissue shows a limited capacity to replace damaged cells (JOHANSSON et al., 1999) and to produce growth inhibitors of associated axons with myelin to create glial scar (OLSON, 2002). Plenty of studies are being developed with stem cell and, despite successful results, there still are controversial opinions. The elimination of the glial scar, the benefits of its growth at different stages and the assessment of axonal growth inhibitors\' release can be parameters of analysis for treating spinal cord. The enzyme chondroitinase ABC acts in this lesion. In this paper we evaluated the release interruption of axonal inhibitors of glial scar in a non-acute 7 days term from injury, not disregarding its benefits during growth. Our goal was to use cell therapy and establish an effective treatment protocol, creating a research line for studies of spinal cord injury and its treatment. A group of rabbits was used under experimental model, conducting dorsal hemisection and application of chondroitinase ABC with micro injection in short-term injury. Mesenchymal stem cells were applied in the lesion focus after the glial scar treatment with the enzyme. Immunohistochemically, we evaluated the release of glial fibrillary acidic protein (GFAP) and sulfate chondroitin proteoglycan (SCPg) in tissues after treatment which was intended to close some gaps and avoid failures described above, and open a new hope in the treatment of patients with spinal cord injury. Our results also showed superficial understanding of the enzyme and its action on glial scarring in association with cell implant. It has opened a new line of questioning about the benefits due to spinal cord regeneration prior to application of stem cells.
2

O uso de condroitinase ABC combinada com células-tronco do epitélio olfatório de coelhos em modelo de lesão medular por hemissecção dorsal em coelhos / The use of chondroitinase ABC combined with rabbit olphatory stem cells in rabbit model of spinal cord injury by dorsal hemissection

Renato Zonzini Bocabello 10 June 2013 (has links)
Cerca de 0,005% da população mundial sofre de lesão medular. O processo regenerativo do tecido nervoso apresenta limitada capacidade para repor as células danificadas (JOHANSSON et al., 1999) e produzir inibidores de crescimento dos axônios associados com a mielina para formação de cicatriz glial (OLSON, 2002). Apesar de resultados promissores, ainda existem controversas quanto ao uso de células-tronco. A eliminação da cicatriz glial, os benefícios de sua formação em diferentes fases e a avaliação da liberação de inibidores de crescimento axonal podem ser parâmetros de análise para o tratamento medular. A enzima condroitinase ABC atua nessa lesão. Neste trabalho avaliamos a interrupção do processo de liberação de inibidores axonais da cicatriz da glia em um tempo não agudo de 7 dias da lesão, sem descartar seus benefícios na fase de formação. Nosso objetivo foi utilizar terapia celular e estabelecer um protocolo de tratamento eficaz, criando uma linha de pesquisa nos estudos da lesão medular. Foi utilizado um grupo de coelhos experimental com realização de hemissecção dorsal e instituído o uso da condroitinase ABC, por aplicação, com micro injeção a curto prazo da lesão. Foi aplicada célula-tronco mesenquimal no foco da lesão após o tratamento da cicatriz da glia com a enzima. Avaliamos por imunohistoquimica a liberação de glial fibrillary acidic protein (GFAP) e sulfato de condroitina proteoglicano (SCPg) nos tecidos após o tratamento no qual foi pretendido fechar algumas lacunas e evitar falhas já descritas, e abrir uma nova esperança no tratamento de pacientes com lesão medular. Nossos resultados ainda mostraram um entendimento superficial sobre a enzima e sua ação sobre cicatrização da glia em associação com o implante celular. Foi aberta uma nova linha de questionamento sobre os benefícios causados à regeneração medular previamente a aplicação de células-tronco. / Around 0,005% of global human population is affected by Spinal Cord Injury (SCI). The regenerative process of neural tissue shows a limited capacity to replace damaged cells (JOHANSSON et al., 1999) and to produce growth inhibitors of associated axons with myelin to create glial scar (OLSON, 2002). Plenty of studies are being developed with stem cell and, despite successful results, there still are controversial opinions. The elimination of the glial scar, the benefits of its growth at different stages and the assessment of axonal growth inhibitors\' release can be parameters of analysis for treating spinal cord. The enzyme chondroitinase ABC acts in this lesion. In this paper we evaluated the release interruption of axonal inhibitors of glial scar in a non-acute 7 days term from injury, not disregarding its benefits during growth. Our goal was to use cell therapy and establish an effective treatment protocol, creating a research line for studies of spinal cord injury and its treatment. A group of rabbits was used under experimental model, conducting dorsal hemisection and application of chondroitinase ABC with micro injection in short-term injury. Mesenchymal stem cells were applied in the lesion focus after the glial scar treatment with the enzyme. Immunohistochemically, we evaluated the release of glial fibrillary acidic protein (GFAP) and sulfate chondroitin proteoglycan (SCPg) in tissues after treatment which was intended to close some gaps and avoid failures described above, and open a new hope in the treatment of patients with spinal cord injury. Our results also showed superficial understanding of the enzyme and its action on glial scarring in association with cell implant. It has opened a new line of questioning about the benefits due to spinal cord regeneration prior to application of stem cells.
3

Delivery of thermostabilized chondroitinase ABC enhances axonal sprouting and functional recovery after spinal cord injury

Lee, Hyun-Jung 10 November 2009 (has links)
Chondroitin sulfate proteoglycans (CSPGs) are one major class of axon growth inhibitors that are upregulated and accumulated around the lesion site after spinal cord injury (SCI), and result in regenerative failure. To overcome CSPG-mediated inhibition, digestion of CSPGs with chondroitinase ABC (chABC) has been explored and it has shown promising results. chABC digests glycosaminoglycan chains on CSPGs and can thereby enhance axonal regeneration and promote functional recovery when delivered at the site of injury. However, chABC has a crucial limitation; it is thermally unstable and loses its enzymatic activity rapidly at 37 ºC. Therefore, it necessitates the use of repeated injections or local infusions with a pump for days to weeks to provide fresh chABC to retain its enzymatic activity. Maintaining these infusion systems is invasive and clinically problematic. In this dissertation, three studies are reported that demonstrate our strategy to overcome current limitations of using chABC and develop a delivery system for facilitating chABC treatment after SCI: First, we enhanced the thermostability of chABC by adding trehalose, a protein stabilizer, and developed a system for its sustained local delivery in vivo. Enzymatic activity was assayed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and dimethylmethylene blue (DMMB), and conformational change of the enzyme was measured via circular dichroism (CD) with and without trehalose. When stabilized with trehalose, chABC remained enzymatically active at 37 ºC for up to 4 weeks in vitro. We developed a lipid microtube-agarose hydrogel delivery system for a sustained release and showed that chABC released from the delivery system is still functionally active and slowly released over 2 weeks in vitro. Second, the hydrogel-microtube system was used to locally deliver chABC over two weeks at the lesion site following a dorsal over hemisection injury at T10. The scaffold consisting of hydrogel and chABC loaded lipid microtubes was implanted at the top of the lesion site immediately following injury. To determine effectiveness of topical delivery of thermostabilized chABC, animal groups treated with single injection or gel scaffold implantation of chABC and penicillinase (P'ase) were included as controls. Two weeks after surgery, the functionality of released chABC and the cellular responses were examined by immunohistological analysis with 3B3, CS-56, GFAP and Wisteria floribunda agglutinin (WFA). The results demonstrated that thermostabilized chABC was successfully delivered slowly and locally without the need for an indwelling catheter by using the hydrogel-microtube delivery system in vivo. The results demonstrated that released chABC from the gel scaffold effectively digested CSPGs, and therefore, there were significant differences in CSPG digestion at the lesion site between groups treated with chABC loaded microtube-hydrogel scaffolds and controls. Third, a long term in vivo study (45 days) was conducted to examine axonal sprouting/regeneration and functional recovery with both a single treatment each of microtube loaded chABC or Neurotrophin-3 (NT-3), and a combination of them by using the hydrogel-microtube delivery system. Over the long term study period, the treated animals showed significant improvement in locomotor function and more sprouting of cholera toxin B subunit (CTB)-positive ascending dorsal column fibers and 5-HT serotonergic fibers around the lesion site. We demonstrated that this significant improvement of chABC thermostability facilitates the development of a minimally invasive method for sustained, local delivery of chABC that is potentially a useful and effective approach for treating SCI. In addition to that, we demonstrated that combinatorial therapy with chABC and neurotrophic factors could provide a synergistic effect on axonal regrowth and functional recovery after SCI.
4

GLYCOSAMINOGLYCAN LYASES IN THE PREPARATION OF OLIGOSACCHARIDES

Alabbas, Alhumaidi B 01 January 2018 (has links)
Glycosaminoglycans are heterogeneous polysaccharides that mediate important biological functions. There has been considerable interest in deciphering the precise GAG sequences that are responsible for protein interactions. In fact, several GAG oligosaccharides have been discovered to date as targeting proteins with higher level of specificity. Yet, it has been difficult to develop GAG oligosaccharides as drugs. One of the key reasons for this state of art is that GAG synthesis is extremely challenging and is highly structure-specific. Thus, much of the biology and pharmacology of GAG remains unknown and unexploited to date. An alternative approach is to prepare GAG oligosaccharides using enzymatic depolymerization of polymeric GAGs. GAG lyases, including heparinases and chondritinases represent powerful tools that can theoretically generate multiple oligosaccharides in parallel. However, it is difficult to implement such procedures with high consistency. Moreover, GAG lyases can digest GAGs down to disaccharides. A priori, non-polymeric GAGs, or alternatively GAG oligosaccharides containing 4 to 10 residues, would be expected to function better as therapeutic agents because they would be more homogeneous and less non-specific than their polymeric precursors. Thus, we reasoned that immobilization of these enzymes may engineer altered biopolymer processing, which may afford longer oligosaccharides in higher proportions and greater consistency. Heparinase-I and chondroitinase ABC were immobilized on CNBr-activated Sepharose and compared with the free form of the enzyme. Immobilized GAG lyases retained high efficiency of depolymerization over a wide range of pH, temperature and reusability. Most importantly, the immobilized enzyme was found to produce larger proportions of oligosaccharides longer than di- and tetra-saccharides as compared to lyases in the free form. A two dimensional separation involves size exclusion chromatography followed by reversed phase ion-pairing ultra performance liquid chromatography coupled to electrospray ionization mass spectrometry was employed to separate and characterize oligosaccharide structures. We have identified 40 heparin oligosaccharides, including regular and rare structures ranging from dp4 to dp10 and 39 chondroitin sulfate oligosaccharides in high homogeneity and significant yields. Overall, this technology is likely to offer a simple and cost effective route to preparation of larger amounts of sequences that can be expected to bind and modulate protein function.

Page generated in 0.0408 seconds