Spelling suggestions: "subject:"how group"" "subject:"how croup""
1 |
Homogeneous Projective Varieties of Rank 2 GroupsLeclerc, Marc-Antoine 29 November 2012 (has links)
Root systems are a fundamental concept in the theory of Lie algebra. In this thesis, we will use two different kind of graphs to represent the group generated by reflections acting on the elements of the root system. The root
systems we are interested in are those of type A2, B2 and G2. After drawing the graphs, we will study the algebraic groups corresponding to those root systems. We will use three different techniques to give a geometric description of the homogeneous spaces G/P where G is the algebraic group corresponding to the root system and P is one of its parabolic subgroup. Finally, we will make a link between the graphs and the multiplication of
basis elements in the Chow group CH(G/P).
|
2 |
Homogeneous Projective Varieties of Rank 2 GroupsLeclerc, Marc-Antoine 29 November 2012 (has links)
Root systems are a fundamental concept in the theory of Lie algebra. In this thesis, we will use two different kind of graphs to represent the group generated by reflections acting on the elements of the root system. The root
systems we are interested in are those of type A2, B2 and G2. After drawing the graphs, we will study the algebraic groups corresponding to those root systems. We will use three different techniques to give a geometric description of the homogeneous spaces G/P where G is the algebraic group corresponding to the root system and P is one of its parabolic subgroup. Finally, we will make a link between the graphs and the multiplication of
basis elements in the Chow group CH(G/P).
|
3 |
Homogeneous Projective Varieties of Rank 2 GroupsLeclerc, Marc-Antoine January 2012 (has links)
Root systems are a fundamental concept in the theory of Lie algebra. In this thesis, we will use two different kind of graphs to represent the group generated by reflections acting on the elements of the root system. The root
systems we are interested in are those of type A2, B2 and G2. After drawing the graphs, we will study the algebraic groups corresponding to those root systems. We will use three different techniques to give a geometric description of the homogeneous spaces G/P where G is the algebraic group corresponding to the root system and P is one of its parabolic subgroup. Finally, we will make a link between the graphs and the multiplication of
basis elements in the Chow group CH(G/P).
|
4 |
Principe local-global pour les zéro-cycles / Local-global principle for zero-cyclesLiang, Yongqi 04 October 2011 (has links)
Dans cette thèse, nous nous intéressons à l’étude de l’arithmétique (le principe de Hasse, l’approximation faible, et l’obstruction de Brauer-Manin) des zéro-cycles sur les variétés algébriques définies sur des corps de nombres. Nous introduisons la notion de sous-ensemble hilbertien généralisé. En utilisant la méthode de fibration, nous démontrons que l’obstruction de Brauer-Manin est la seule au principe de Hasse et à l’approximation faible pour les zéro-cycles de degré 1; et établissons l’exactitude d’une suite de type global-local concernant les groupes de Chow des zéro-cycles, pour certaines variétés qui admettent une structure de fibration au-dessus d’une courbe lisse ou au-dessus de l’espace projectif, où les hypothèses arithmétiques sont posées seulement sur les fibres au-dessus d’un sous-ensemble hilbertien généralisé.De plus, nous relions l’arithmétique des points rationnels et l’arithmétique des zérocycles de degré 1 sur les variétés géométriquement rationnellement connexes. Comme application, nous trouvons que l’obstruction de Brauer-Manin est la seule au principe de Hasse et à l’approximation faible pour les zéro-cycles de degré 1 sur- les espaces homogènes d’un groupe algébrique linéaire à stabilisateur connexe,- certains fibrés en surfaces de Châtelet au-dessus d’une courbe lisse ou au-dessus de l’espace projectif (en particulier, les solides de Poonen). / This Ph. D. thesis studies the arithmetic properties (the Hasse principle, the weak approximation, and the Brauer-Manin obstruction) for zero-cycles on algebraic varieties defined over number fields. We introduce the notion of generalized Hilbertian subset. By using the fibration method, we prove that the Brauer-Manin obstruction is the only obstruction tothe Hasse principle and to the weak approximation for zero-cycles of degree 1; and establish the exactness of a sequence of global-local type concerning Chow groups of zero-cycles, for certain varieties which admit a fibration structure overa smooth curve or over the projective space, where the arithmetic hypotheses are only posed on the fibers over a generalized Hilbertian subset. Moreover, we relate the arithmetic of rational points and that of zero-cycles of degree 1 on geometrically rationally connected varieties. As an application, we find that the Brauer-Manin obstruction is the only obstruction to the Hasse principle and to the weak approximation for zero-cycles of degree 1 on- homogeneous spaces of a linear algebraic group with connected stabilizer,- certain varieties fibered into Chatelet surfaces over a smooth curve or over the projective space (in particular, Poonen's threefolds).
|
Page generated in 0.0544 seconds