Spelling suggestions: "subject:"chromatin dynamics"" "subject:"ehromatin dynamics""
1 |
Nuclear architecture in differentiating embryonic stem cellsKleinert, Fanni January 2015 (has links)
Gene expression is regulated at various levels, such as transcription, RNA transport and translation. Additionally, it has been shown that chromatin structure, location and dynamics also have an important role in gene expression control. While active gene regions are strongly associated with an open chromatin structure at the surface of the chromosome territory (CT) and a location in the nuclear interior, inactive gene regions seem to be related with a closed structure within the CT and a position at the nuclear periphery. However, it is still unclear how these features are regulated. Importantly, malfunction of gene regulation can impact on health and longevity. Therefore, the aim of this project was to investigate the correlation of gene expression and chromatin organisation both in single gene loci and the MHC gene cluster. The MHC locus has the highest gene density in mammalian cells and contains genes that can be reprogrammed by pro-inflammatory cytokines. The original goal of this project was to label the MHC locus by the Lac operator/repressor (LacO/LacI) approach in order to study chromatin dynamics in living cells using labelled CTs as reference for genome mobility. The thymidine analogue EdU, that can be used to label CTs, was analysed for its effects on cell cycle progression and survival, and revealed to have a strong negative impact on the cells' well-being. In the end, the LacO/LacI-recognition system for live-cell imaging did not succeed, thus FISH analyses were carried out to study chromatin dynamics in snap-shots. The location and structure of the hybridised gene regions were analysed in response to gene activation and inactivation during ESC differentiation to neuroepithelial progenitors (NPs). Single-gene focused experiments were performed using the cell line specific genes, Oct4 and Sox1, together with Gapdh as a housekeeping gene. Even though, the results showed less changes between the days of differentiation on the Gapdh locus, the gene expression profiles for the cell line specific genes did not match with the hypothesised chromatin organisation (see above). However, investigations on the gene-dense MHC locus showed structural chromatin changes that correlated with the activation of genes in this region. Interestingly, ESC treated with TNFalpha were unable to activate NF-kappaB signalling, probably due to the lack of a functional IKK complex. In summary, this project was focussing on the regulation of gene expression by the chromatin architecture and revealed complex chromatin dynamics that are likely to be affected by the sum of genes in a genome region, rather than a single gene.
|
2 |
Chromatin Modified! Dynamics, Mechanics, Structure, and HIV IntegrationSimon, Marek 20 June 2012 (has links)
No description available.
|
3 |
THE DYNAMIC NATURE OF CHROMATINRiedmann, Caitlyn M. 01 January 2017 (has links)
Eukaryotic organisms contain their entire genome in the nucleus of their cells. In order to fit within the nucleus, genomic DNA wraps into nucleosomes, the basic, repeating unit of chromatin. Nucleosomes wrap around each other to form higher order chromatin structures. Here we study many factors that affect, or are effected by, chromatin structure including: (1) how low-dose inorganic arsenic (iAs) changes chromatin structures and their relation to global transcription and splicing patterns, and (2) how chromatin architectural proteins (CAPs) bind to and change nucleosome dynamics and DNA target site accessibility.
Despite iAs’s non-mutagenic nature, chronic exposure to low doses of iAs is associated with a higher risk of skin, lung, and bladder cancers. We sought to identify the genome-wide changes to chromatin structure and splicing profiles behind the cell’s adaptive response to iAs and its removal. Furthermore, we extended our investigation into cells that had the iAs insult removed. Our results show that the iAs-induced epithelial to mesenchymal transition and changes to the transcriptome are coupled with changes to the higher order chromatin structure and CAP binding patterns. We hypothesize that CAPs, which bind the entry/exit and linker DNA of nucleosomes, regulate DNA target site accessibility by altering of the rate of spontaneous dissociation of DNA from nucleosome.
Therefore, we investigated the effects of the repressive CAP histone H1, the activating CAP high mobility group D1 (HMGD1), and the neural CAP methyl CpG binding protein 2 (MeCP2) on the dynamics of short chromatin arrays and mononucleosomes and their effect on nucleosomal DNA accessibility. Using biochemical and biophysical analyses we show that all CAP-chromatin structures tested were susceptible to chromatin remodeling by ISWI and created more stable higher order structures than if CAPs were absent. Additionally, histone H1 and MeCP2 hinder model transcription factor Gal4 from binding its cognate DNA site within nucleosomal DNA.
Overall, we show that chromatin structure is dynamic and changes in response to environmental signals and that CAPs change nucleosome dynamics that help to regulate chromatin structures and impact transcriptional profiles.
|
4 |
Quantitative analysis of chromatin dynamics and nuclear geometry in living yeast cells / Analyse quantitative de la dynamique chromatinienne et de la géométrie du noyau dans des cellules de levures vivantesWang, Renjie 12 October 2016 (has links)
L'analyse de l'organisation à grande échelle des chromosomes, par des approches d'imagerie et de biologie moléculaire, constitue un enjeu important de la biologie. Il est maintenant établi que l'organisation structurelle du génome est un facteur déterminant dans tous les aspects des " transactions " génomiques: transcription, recombinaison, réplication et réparation de l'ADN. Bien que plusieurs modèles aient été proposés pour décrire l'arrangement spatial des chromosomes, les principes physiques qui sous-tendent l'organisation et la dynamique de la chromatine dans le noyau sont encore largement débattus. Le noyau est le compartiment de la cellule dans lequel l'ADN chromosomique est confiné. Cependant, la mesure quantitative de l'influence de la structure nucléaire sur l'organisation du génome est délicate, principalement du fait d'un manque d'outils pour déterminer précisément la taille et la forme du noyau. Cette thèse est organisée en deux parties: le premier axe de mon projet était d'étudier la dynamique et les propriétés physiques de la chromatine dans le noyau de la levure S. cerevisiae. Le deuxième axe visait à développer des techniques pour détecter et quantifier la forme et la taille du noyau avec une grande précision. Dans les cellules de levure en croissance exponentielle, j'ai étudié la dynamique et les propriétés physiques de la chromatine de deux régions génomiques distinctes: les régions codant les ARN ribosomiques regroupés au sein d'un domaine nucléaire, le nucléole, et la chromatine du nucléoplasme. Le mouvement de la chromatine nucléoplasmique peut être modélisé par une dynamique dite de " Rouse ". La dynamique de la chromatine nucléolaire est très différente et son déplacement caractérisé par une loi de puissance d'exposant ~ 0,7. En outre, nous avons comparé le changement de la dynamique de la chromatine nucléoplasmique dans une souche sauvage et une souche porteuse d'un allèle sensible à la température (ts) permettant une inactivation conditionnelle de la transcription par l'ARN polymérase II. Les mouvements chromatiniens sont beaucoup plus importants après inactivation transcriptionnelle que dans la souche témoin. Cependant, les mouvements de la chromatine restent caractérisés par une dynamique dite de " Rouse ". Nous proposons donc un modèle biophysique prenant en compte ces résultats : le modèle de polymère dit "branched-Rouse". Dans la deuxième partie, j'ai développé "NucQuant", une méthode d'analyse d'image permettant la localisation automatique de la position de l'enveloppe nucléaire du noyau de levures. Cet algorithme comprend une correction post-acquisition de l'erreur de mesure due à l'aberration sphérique le long de l'axe Z. "NucQuant" peut être utilisée pour déterminer la géométrie nucléaire dans de grandes populations cellulaires. En combinant " NucQuant " à la technologie microfluidique, nous avons pu estimer avec précision la forme et la taille des noyaux en trois dimensions (3D) au cours du cycle cellulaire. "NucQuant" a également été utilisé pour détecter la distribution des regroupements locaux de complexes de pore nucléaire (NPCs) dans des conditions différentes, et a révélé leur répartition non homogène le long de l'enveloppe nucléaire. En particulier, nous avons pu montrer une distribution particulière sur la région de l'enveloppe en contact avec le nucléole. En conclusion, nous avons étudié les propriétés biophysiques de la chromatine, et proposé un modèle dit "branched Rouse-polymer" pour rendre compte de ces propriétés. De plus, nous avons développé "NucQuant", un algorithme d'analyse d'image permettant de faciliter l'étude de la forme et la taille nucléaire. Ces deux travaux combinés vont permettre l'étude des liens entre la géométrie du noyau et la dynamique de la chromatine. / Chromosome high-order architecture has been increasingly studied over the last decade thanks to technological breakthroughs in imaging and in molecular biology. It is now established that structural organization of the genome is a key determinant in all aspects of genomic transactions. Although several models have been proposed to describe the folding of chromosomes, the physical principles governing their organization are still largely debated. Nucleus is the cell’s compartment in which chromosomal DNA is confined. Geometrical constrains imposed by nuclear confinement are expected to affect high-order chromatin structure. However, the quantitative measurement of the influence of the nuclear structure on the genome organization is unknown, mostly because accurate nuclear shape and size determination is technically challenging. This thesis was organized along two axes: the first aim of my project was to study the dynamics and physical properties of chromatin in the S. cerevisiae yeast nucleus. The second objective I had was to develop techniques to detect and analyze the nuclear 3D geomtry with high accuracy. Ribosomal DNA (rDNA) is the repetitive sequences which clustered in the nucleolus in budding yeast cells. First, I studied the dynamics of non-rDNA and rDNA in exponentially growing yeast cells. The motion of the non-rDNA could be modeled as a two-regime Rouse model. The dynamics of rDNA was very different and could be fitted well with a power law of scaling exponent ~0.7. Furthermore, we compared the dynamics change of non-rDNA in WT strains and temperature sensitive (TS) strains before and after global transcription was actived. The fluctuations of non-rDNA genes after transcriptional inactivation were much higher than in the control strain. The motion of the chromatin was still consistent with the Rouse model. We propose that the chromatin in living cells is best modeled using an alternative Rouse model: the “branched Rouse polymer”. Second, we developed “NucQuant”, an automated fluorescent localization method which accurately interpolates the nuclear envelope (NE) position in a large cell population. This algorithm includes a post-acquisition correction of the measurement bias due to spherical aberration along Z-axis. “NucQuant” can be used to determine the nuclear geometry under different conditions. Combined with microfluidic technology, I could accurately estimate the shape and size of the nuclei in 3D along entire cell cycle. “NucQuant” was also utilized to detect the distribution of nuclear pore complexes (NPCs) clusters under different conditions, and revealed their non-homogeneous distribution. Upon reduction of the nucleolar volume, NPCs are concentrated in the NE flanking the nucleolus, suggesting a physical link between NPCs and the nucleolar content. In conclusion, we have further explored the biophysical properties of the chromatin, and proposed that chromatin in the nucleoplasm can be modeled as "branched Rouse polymers". Moreover, we have developed “NucQuant”, a set of computational tools to facilitate the study of the nuclear shape and size. Further analysis will be required to reveal the links between the nucleus geometry and the chromatin dynamics.
|
5 |
Modélisation et analyse de modèles de polymères aléatoirement réticulé et application à l’organisation et à la dynamique de la chromatine / Modeling and analysis of randomly cross-linked polymers and application to chromatin organization and dynamicsShukron, Ofir 16 November 2017 (has links)
Dans cette thèse nous étudions la relation entre la conformation et la dynamique de la chromatine en nous basant sur une classe de modèles de polymères aléatoirement réticulé (AR). Les modèles AR permettent de prendre en compte la variabilité de la conformation de la chromatine sur l’ensemble d’une population de cellules. Nous utilisons les outils tels que les statistiques, les processus stochastiques, les simulations numériques ainsi que la physique des polymères afin de déduire certaines propriétés des polymères AR a l’équilibre ainsi que pour des cas transitoires. Nous utilisons par la suite ces propriétés afin d’élucider l’organisation dynamique de la chromatine pour diverses échelles et conditions biologiques. Dans la première partie de ce travail, nous développons une méthode générale pour construire les polymères AR directement à partir des données expérimentales, c’est-à-dire des données de capture chromosomiques (CC). Nous montrons que des connections longue portées persistantes entre des domaines topologiquement associés (DTA) affectent le temps de rencontre transitoire entre les DTA dans le processus d’inactivation du chromosome X. Nous montrons de plus que la variabilité des exposants anormaux – mesurée en trajectoires de particules individuelles (TPI) – est une conséquence directe de l’hétérogénéité dans la position des réticulations. Dans la deuxième partie, nous utilisons les polymères AR afin d’étudier la réorganisation locale du génome au point de cassure des deux branches d’ADN (CDB). Le nombre de connecteurs dans le modèle de polymère AR est calibré à partir de TPI, mesurées avant et après la CDB. Nous avons trouvé que la perte modérée de connecteur autour des sites de la CDB affecte de façon significative le premier temps de rencontre des deux extrémités cassées lors du processus de réparation d’une CBD. Nous montrons comment un micro-environnement génomique réticulé peut confiner les extrémités d’une cassure, empêchant ainsi les deux brins de dériver l’un de l’autre. Dans la troisième partie nous déduisons une expression analytique des propriétés transitoires et a l’équilibre du modèle de polymère AR, représentant une unique région DTA. Les expressions ainsi obtenue sont ensuite utilisées afin d’extraire le nombre moyen de connexions dans les DTA provenant des données de CC, et ce à l’aide d’une simple procédure d’ajustement de courbe. Nous dérivons par la suite la formule pour le temps moyen de première rencontre (TMPR) entre deux monomères d’un polymère AR. Le TMPR est un temps clé pour des processus tels que la régulation de gènes et la réparation de dommages sur l’ADN. Dans la dernière partie, nous généralisons le modèle AR analytique afin de prendre en compte plusieurs DTA de tailles différentes ainsi que les connectivités intra-DTA et extra-DTA. Nous étudions la dynamique de réorganisation de DTA lors des stages successifs de différentiations cellulaires à partir de données de CC. Nous trouvons un effet non-négligeable de la connectivité de l’inter-DTA sur les dynamiques de la chromatique. Par la suite nous trouvons une compactification et une décompactification synchrone des DTA à travers les différents stages. / In this dissertation we study the relationship between chromatin conformation and dynamics using a class of randomly cross-linked (RCL) polymer models. The RCL models account for the variability in chromatin conformation over cell population. We use tools from statistics, stochastic process, numerical simulations and polymer physics, to derive the steady-state and transient properties of the RCL polymer, and use them to elucidate the dynamic reorganization of the chromatin for various scales and biological conditions. In the first part of this dissertation work, we develop a general method to construct the RCL polymer directly from chromosomal capture (CC) data. We show that persistent long-range connection between topologically associating domain (TAD) affect transient encounter times within TADs, in the process of X chromosome inactivation. We further show that the variability in anomalous exponents, measured in single particle trajectories (SPT), is a direct consequence of the heterogeneity of cross-link positions. In the second part, we use the RCL polymer to study local genome reorganization around double strand DNA breaks (DSBs). We calibrate the number of connectors in the RCL model using SPT data, acquired before and after DSB. We find that the conservative loss of connectors around DSB sites significantly affects first encounter times of the broken ends in the process of DSB repair. We show how a cross-linked genomic micro-environment can confine the two broken ends of a DSB from drifting apart. In the third part, we derive analytical expressions for the steady-state and transient properties of the RCL model, representing a single TAD region. The derived expressions are then used to extract the mean number of cross-links in TADs of the CC data, by as simple curve fitting procedure. We further derive formula for the mean first encounter time (MFET) between any two monomers of the RCL polymer. The MFET is a key time in processes such as gene regulation. In the last part, we generalize the analytical RCL model, to account for multiple TADs with variable sizes, intra, and inter-TAD connectivity. We study the dynamic reorganization of TADs, throughout successive stages of cell differentiation, from the CC data. We find non-negligible effect of inter-TAD connectivity on the dynamics of the chromatin. We further find a synchronous compaction and decompaction of TADs during differentiation.
|
6 |
Dynamic epigenetic changes in immune responses to infection in human dendritic cellsPacis, Alain 05 1900 (has links)
La méthylation de l'ADN est une marque épigénétique importante chez les mammifères. Malgré le fait que la méthylation de la cytosine en 5' (5mC) soit reconnue comme une modification épigénétique stable, il devient de plus en plus reconnu qu'elle soit un processus plus dynamique impliquant des voies de méthylation et de déméthylation actives. La dynamique de la méthylation de l'ADN est désormais bien caractérisée dans le développement et dans le fonctionnement cellulaire des mammifères. Très peu est cependant connu concernant les implications régulatrices dans les réponses immunitaires. Pour se faire, nous avons effectué des analyses du niveau de transcription des gènes ainsi que du profilage épigénétique de cellules dendritiques (DCs) humaines. Ceux-ci ont été faits avant et après infection par le pathogène Mycobacterium tuberculosis (MTB). Nos résultats fournissent le premier portrait génomique du remodelage épigénétique survenant dans les DCs en réponse à une infection bactérienne. Nous avons constaté que les changements dans la méthylation de l'ADN sont omniprésents, identifiant 3,926 régions différentiellement méthylées lors des infections par MTB (MTB-RDMs). Les MTB-RDMs montrent un chevauchement frappant avec les régions génomiques marquées par les histones associées avec des régions amplificatrices. De plus, nos analyses ont révélées que les MTB-RDMs sont activement liées par des facteurs de transcription associés à l'immunité avant même d'être infecté par MTB, suggérant ces domaines comme étant des éléments d'activation dans un état de dormance. Nos données suggèrent que les changements actifs dans la méthylation jouent un rôle essentiel pour contrôler la réponse cellulaire des DCs à l'infection bactérienne. / DNA methylation is an important epigenetic mark in mammals. Although methylation at the 5’ position of cytosine (5mC) is recognized as a stable epigenetic modification, it is becoming increasingly viewed as a more dynamic process that involves both active methylation and demethylation pathways. While the dynamics of DNA methylation has been well characterized in mammalian development and normal cellular function, little is known about its regulatory implications in immune responses. To that end, we performed comprehensive transcriptional and epigenetic profiling of primary dendritic cell (DC) samples from humans, before and after infection with Mycobacterium tuberculosis (MTB). Our results provide the first complete genomic portrait of the extensive epigenetic remodeling occurring in primary DCs in response to a bacterial infection. We found that active changes in DNA methylation are pervasive, identifying 3,926 MTB-induced differentially methylated regions (MTB-DMRs). MTB-DMRs show a striking overlap with genomic regions marked by histones associated with enhancer activity. ATAC-seq footprinting analysis revealed that regions that change methylation were actively bound by immune-related TFs prior to MTB-infection suggesting that these domains are likely to represent enhancer elements in a poised state. Our data suggests that active changes in DNA methylation play an essential and previously unappreciated role at controlling of the regulatory programs engaged by DCs in response to a bacterial infection.
|
Page generated in 0.0642 seconds